Spectral Methods for Neural Computation

Michael Lindsey
Boahen Lab Meeting
January 28, 2014

1. OUTLINE

- What kinds of functions can be computed effectively with neurons?

1. OUTLINE

- What kinds of functions can be computed effectively with neurons?

- Method for computing sinusoids

1. OUTLINE

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids

- Robust to environmental changes

1. OUTLINE

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes

- Application: robot control

1. OUTLINE

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids

- Robust to environmental changes

- Application: robot control

- Practical suggestions for neuromorphic engineering

1. OUTLINE

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids

- Robust to environmental changes

- Application: robot control

- Practical suggestions for neuromorphic engineering

- (Analogous method for computing polynomials)

1. OUTLINE

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids

- Robust to environmental changes

- Application: robot control

- Practical suggestions for neuromorphic engineering

- (Analogous method for computing polynomials)

- (Application: numerical integration)

A MOTIVATING EMPIRICAL RESULT

2.

‘Polynomial’ basis

‘Hinge’ tuning curves

2. A MOTIVATING EMPIRICAL RESULT

‘Gaussian’ tuning curves

‘Fourier’ basis

3. A SHOT IN THE DARK

- Try adding up translated (4) Gaussian functions with extrema aligned
with local extrema of sinusoid

3. A SHOT IN THE DARK

- Try adding up translated (£) Gaussian functions with extrema aligned
with local extrema of sinusoid

- Surprising result! But it’s no accident...

4. THE FOURIER TRANSFORM

-FT (F): f(w) = F()w) = fp f(@)e ™da

4. THE FOURIER TRANSFORM

AN

-FT (F): flw) = F(f)w) = Jg f@)e ™ dx
- Inverse FT (F~1): f(z) = F1(f)(z) = -+ o Flw)e™ dw

4. THE FOURIER TRANSFORM

-FT (F): flw) = F(Hw) = [y f(x)e_i“’“’dw
- Inverse FT (F~1): f(z) = F X fR)€ dw

- Property 1: F and F~1 are linear operators

4. THE FOURIER TRANSFORM

CFT (F): Flw) = F(H(w) = e e
- Inverse FT (F~1): f(z) = F X fR)@ dw
- Property 1: F and F~1 are linear operators

- Property 2 (translation): If fp(z) = f(z —T), then fr(w) = e T f(w)

4. THE FOURIER TRANSFORM

-FT (F): flw) = F(Hw) = fo f (w)e‘i“’“’dw

- Inverse FT (F71): f(z) = FY fR) dw

- Property 1: F and F~1 are linear operators

- Property 2 (translation): If fr(z) = f(z —T), then fr(w) = =7 f(w)
- We say that a function f is Schwartz if f is smooth (infinitely differen-

tiable) and if f and all of its derivatives decay faster than any polynomial
(e.g., the Gaussian function, any smooth function of compact support)

4. THE FOURIER TRANSFORM

-FT (F): fw) =F(f)w) = [y f(x)e—iwwdx

- Inverse FT (F~1): f(z) = FY fR)@ dw

- Property 1: F and F~1 are linear operators

- Property 2 (translation): If fp(z) = f(z —T), then fr(w) = =7 f(w)
- We say that a function f is Schwartz if f is smooth (infinitely differen-
tiable) and if f and all of its derivatives decay faster than any polynomial

(e.g., the Gaussian function, any smooth function of compact support)

- Property 3: F and F~! map Schwartz functions to Schwartz functions
(in fact, F'T of Gaussian is Gaussian)

- Notionally: smoothness in spatial domain <+ decay in frequency domain
(also, decay in spatial domain <> smoothness in frequency domain)

- Notionally: smoothness in spatial domain <+ decay in frequency domain
(also, decay in spatial domain <> smoothness in frequency domain)

- Notionally: lack of smoothness (box function) <> slow decay (sinc func-
tion)

- Notionally: smoothness in spatial domain <+ decay in frequency domain
(also, decay in spatial domain <> smoothness in frequency domain)

- Notionally: lack of smoothness (box function) <> slow decay (sinc func-
tion)

1.5 —+rr+v| ¢+~ r v v 01T rv .| r¢r.7r1

10~ O O
1 1
B ' |
])
"])
1 1
05 o] o —
1 1
B ' |
1 1
))
]]
0.0 o o 0.2
. SRV RV
L L L l L L L l L L L l L L L l L L L l L L L
-0.5 0.2}
-15 -1.0 -05 0.0 05 1.0 15

Discontinuity Slow decay

- Notionally: smoothness in spatial domain <+ decay in frequency domain
(also, decay in spatial domain <> smoothness in frequency domain)

- Notionally: lack of smoothness (box function) <> slow decay (sinc func-
tion)

15 T
ok o o :
05 + o -
0.0 I o o] 0.2}

i AN /\ /\ VRN l

i o~ A/ - N 6
—0‘5 L L L l L L L l L L L l L L L l L L L l L L L

15 1.0 05 0.0 05 1.0 15 0.2}
Discontinuity Slow decay

AN

jalf (aw)

-Property 4 (scaling): If fo(x) = f(2), then Falw)

5. PRECISE STATEMENT FOR CONSTRUCTING SINUSOIDS

- Let g be a Schwartz function. Let :z:,(:r) =1+ 4k, zc,(g—) = —1+ 4k. Let

g7 (2) = gz — 27 and ¢\ (z) = g(z — 2\

5. PRECISE STATEMENT FOR CONSTRUCTING SINUSOIDS

- Let g be a Schwartz function. Let a:,(j) =1+ 4k, zc,(c—) = —1+ 4k. Let
9" (@) = g(e — 2,") and g7 (2) = g(a — o)

Let fy — (g(()+) _ g(()—>) LYY (g£+> g0 4 g -))

5. PRECISE STATEMENT FOR CONSTRUCTING SINUSOIDS

- Let g be a Schwartz function. Let a:,(c+) =1+ 4k, :c,(c—) = —1+ 4k. Let
9" (@) = g(e — 2,") and g7 (2) = g(a — ;)

Let fy — (g(()+) _ g(()—>) LYY (g£+) g 4 g _ o k))

- Then for all z € R, as N — oo,

x) — i(_l)k [ak sin ((g + k7r) :1:) — by, cos ((g + kﬂ') x)]

k=0

5. PRECISE STATEMENT FOR CONSTRUCTING SINUSOIDS

- Let g be a Schwartz function. Let :z:,(j) 1 + 4k, :c,(c—) = —1+ 4k. Let
(+) (=) (=)
k)

g7 (x) = g(z — 2;7) and g (z) = g(z — 2
et fr = (57— 07) + S (08— 68+ 0% — o)

- Then for all z € R, as N — oo,

fn(z) — zo::(—l)k [ak sin ((g + kﬂ') a:) — by, cos ((g + kﬂ') a:)]

k=0
= aosin (52) —bocos () +
= qgsin 2:1: 0 COS 2:{:

5. PRECISE STATEMENT FOR CONSTRUCTING SINUSOIDS

- Let g be a Schwartz function. Let :z:,(j) 1 + 4k, :c,(c—) = —1+ 4k. Let
(+) (=) (=)
k)

g, () = g(x — x§c+)) and g, '(z) =9g(z —z
et gy = (6 = 0) + S (o - o0+ 5 - 5)
- Then for all z € R, as N — o0,

fn(z) — zo::(—l)k [ak sin ((g + kﬂ') a:) — by, cos ((g + kﬂ') a:)]

k=0
= aosin (52) —bocos () +
= qgsin 2:1: 0 COS 2:{:

where a;r = R (§ (g + kw)), b, =S (/g\(g + kw)) for all k.

6. A SURPRISING CONSEQUENCE

- We do not require that the tuning curve g have a single local extremum

3.5

Weird tuning curve

2 neurons 6 neurons

10 neurons

lllllllll

N=8 |

- Since g is Schwartz, ¢ is also Schwartz, so by a sufficiently large hori-
zontal scaling of g, we can get ag > ay for all £ > 1

- Since g is Schwartz, ¢ is also Schwartz, so by a sufficiently large hori-
zontal scaling of g, we can get ag > ay for all £ > 1

- In this case, fx(z) ~ agsin (£z) for N large enough.

- Since g is Schwartz, ¢ is also Schwartz, so by a sufficiently large hori-
zontal scaling of g, we can get ag > ay for all £ > 1

- In this case, fx(z) ~ agsin (£z) for N large enough.

- Can extend to the case where g is continuous and decays faster than
1 (proof expresses g as a limit of Schwartz functions)

- Since g is Schwartz, ¢ is also Schwartz, so by a sufficiently large hori-
zontal scaling of g, we can get ag > ay for all £ > 1

- In this case, fx(z) ~ agsin (£z) for N large enough.

- Can extend to the case where g is continuous and decays faster than
1 (proof expresses g as a limit of Schwartz functions)

- However, cannot guarantee that ag > ay for all kK > 1. How to guaran-
tee rapidly decaying Fourier transform?

7. MOLLIFYING PATHOLOGICAL TUNING CURVES

- We can mollify (smooth out) functions by convolving them with a
smooth function of compact support

7. MOLLIFYING PATHOLOGICAL TUNING CURVES
- We can mollify (smooth out) functions by convolving them with a

smooth function of compact support

- This is like replacing the value of the function at each point with a
smooth weighted average of the values at its neighboring points

7. MOLLIFYING PATHOLOGICAL TUNING CURVES

- We can mollify (smooth out) functions by convolving them with a
smooth function of compact support

- This is like replacing the value of the function at each point with a
smooth weighted average of the values at its neighboring points

—1
- For example, take mollifier, p(z) = e1-1=? |

A

el N

-1 1

7. MOLLIFYING PATHOLOGICAL TUNING CURVES

- We can mollify (smooth out) functions by convolving them with a
smooth function of compact support

- This is like replacing the value of the function at each point with a
smooth weighted average of the values at its neighboring points

—1
- For example, take mollifier, p(z) = e1-= I ;1

A

el I N

-1 1

- A discrete mollification can be carried out by a simple neural network:

f@) = (S e (D) S0t ee (2) £ (@~ 50)

- We demonstrate this strategy on a nasty tuning curve (hat function)

- We demonstrate this strategy on a nasty tuning curve (hat function)

A

Mollified hat functions obtained from above procedure (with § = 0.1)

Blue: no mollification. Green: n = 4 (convex combination of 7 hat
functions). Red: n = 8 (15 hat functions)

\/ -

Approximation using no mollification (left), mollification with § = 0.3, n =4 (right)

Without smoothing

AR

\
\/ \/

With smoothing

Approximation using no mollification (left), mollification with § = 0.3, n = 4 (right)

\ \ / \
‘ . \/‘ | | .\/
Without smoothing With smoothing
n 0 4 8
L? error [1.3 x 1073 6.7 x 107° [2.9 x 107°
L*® error | 0.0912 0.0065 0.0024

So to approximate one period of a sinusoid, we require about 14 hat-shaped tuning

curves (as opposed to 2 Gaussian tuning curves)

- We know that this strategy will work in general because of the...

- We know that this strategy will work in general because of the...

Convolution theorem:
F(f*g)=F(f)F(9)

- We know that this strategy will work in general because of the...

Convolution theorem:
F(f*xg)=F(f)F(9)

- Since a mollifier ¢ is Schwartz, F(p) is Schwartz, and convolution with
@ multiplies the frequency spectrum of our tuning curve by a rapidly
decaying function

- We know that this strategy will work in general because of the...

Convolution theorem:
F(f*g)=F(f)F(9)

- Since a mollifier ¢ is Schwartz, F(p) is Schwartz, and convolution with
¢ multiplies the frequency spectrum of our tuning curve by a rapidly
decaying function

- For a sufficiently wide mollifier, F(¢) is localized enough to make our
approximation hold with negligible error

- We know that this strategy will work in general because of the...

Convolution theorem:
F(f*xg)=F(f)F(9)

- Since a mollifier ¢ is Schwartz, F(p) is Schwartz, and convolution with
@ multiplies the frequency spectrum of our tuning curve by a rapidly
decaying function

- For a sufficiently wide mollifier, F(¢) is localized enough to make our
approximation hold with negligible error

- We may need to choose sample spacing é smaller for more irregular
tuning curve shapes

8. WHAT 1S THE OPTIMAL TUNING CURVE?

8. WHAT 1S THE OPTIMAL TUNING CURVE?

- We want a tuning curve which is as localized as possible in both spatial
and frequency domains

8. WHAT 1S THE OPTIMAL TUNING CURVE?

- We want a tuning curve which is as localized as possible in both spatial
and frequency domains

- We can actually suggest an answer in a certain sense

8. WHAT 1S THE OPTIMAL TUNING CURVE?

- We want a tuning curve which is as localized as possible in both spatial
and frequency domains

- We can actually suggest an answer in a certain sense (the Gaussian)

8. WHAT 1S THE OPTIMAL TUNING CURVE?

- We want a tuning curve which is as localized as possible in both spatial
and frequency domains

- We can actually suggest an answer in a certain sense (the Gaussian)

_For f € L*(R), let P(¢) = LOL

THE (so P is a pdf), and

o?(f) := inf /R (t —to)?P(t)dt,

to

so o(f) is the standard deviation of an RV with density P, ﬁ measures
the localization of f

8. WHAT 1S THE OPTIMAL TUNING CURVE?

- We want a tuning curve which is as localized as possible in both spatial
and frequency domains

- We can actually suggest an answer in a certain sense (the Gaussian)

- For f € L2(R), let P(t) = 'ﬁgfﬁg

o?(f) := inf /R (t —to)?P(t)dt,

(so P is a pdf), and

to
so o(f) is the standard deviation of an RV with density P, ﬁ measures
the localization of f
Weyl-Heisenberg Uncertainty Principle:

a(f)o(f) > 1, with equality if and only if f is a Gaussian

Review

We can build sinusoids from smooth, rapidly
decaying tuning curves

It’s okay if the tuning curves have many peaks
...but Gaussians are the best

We can deal with non-smooth tuning curves
Network structure itself encodes computation
Robust to modification of tuning curve
Sinusoids as basis

APPLICATION: STATISTICAL INFERENCE

- Take g(z) = (222 4 0.5)e(@=032)°

APPLICATION: STATISTICAL INFERENCE

- Take g(z) = (222 + 0.5)e~(@-032°

- We approximate the p-th moment of g by Ei:_3 nPg(n)

Sme_anPg(n) [uPg(u)du

APPLICATION: STATISTICAL INFERENCE

ESERSERS LS
|

- Take g(z) = (222 + 0.5)e(@-032°

- We approximate the p-th moment of g by)

3

Lo —= O

n=-—3 npg(n)
nesnPg(n) [uPg(u)du
3.02 3.02
2.11 2.10
4.32 4.32
5.24 5.30

9. APPROXIMATING POLYNOMIALS

9. APPROXIMATING POLYNOMIALS

Theorem. Let g be a Schwartz function, and for all n € Z let g, be the function
defined by g.(z) = g(x —n).

9. APPROXIMATING POLYNOMIALS

Theorem. Let g be a Schwartz function, and for all n € Z let g, be the function
defined by g,(z) = g(x —n). Define

where p is a non-negative even integer.

9. APPROXIMATING POLYNOMIALS

Theorem. Let g be a Schwartz function, and for all n € Z let g, be the function
defined by g,(z) = g(x —n). Define

where p is a non-negative even integer. Then for all x € R,

fn(z) — Z cn(x)z"™
n=0

as N — oo

9. APPROXIMATING POLYNOMIALS

Theorem. Let g be a Schwartz function, and for all n € Z let g, be the function
defined by g,(z) = g(x —n). Define

where p is a non-negative even integer. Then for all x € R,

fn(z) — Z cn(x)z"™
n=0

as N — oo, where

— ;n—p p ~p—n) 2mwikz
cn(z) =1 (n) Zg (27k)e :

keZ

9. APPROXIMATING POLYNOMIALS

Theorem. Let g be a Schwartz function, and for all n € Z let g, be the function
defined by g,(z) = g(x —n). Define

where p is a non-negative even integer. Then for all x € R,

p
fn(z) — Z cn(x)z"™
n=0
as N — oo, where

— ;n—p p ~p—n) 2mikx
cn(z) =1 (n) Zg (27k)e :

keZ

In particular, by modifying g with an appropriate horizontal scaling if necessary, we

obtain the approzimation (for large enough N) fn(z) ~ Y P _,c,z™, where

Cp = fup_”g(u)du, so ¢, are constants and fn is approximately a polynomial.

APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions
qos---54n

APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions
qos---54n

- Generally these functions are products of functions ¢;, sin(g;), cos(g;)

APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions
qos---5qn

- Generally these functions are products of functions ¢;, sin(g;), cos(g;)

- Note that since we can square things, we can multiply things, due to
the fact that zy = 2((z +y)? — 2% — y?)

APPLICATION: ROBUST ROBOT CONTROL

- Robot control demands the computation of functions in joint positions
qos---54n

- Generally these functions are products of functions ¢;, sin(g;), cos(g;)

- Note that since we can square things, we can multiply things, due to
the fact that zy = 2((z +y)? — 2% — y?)

- Thus we are equipped to do robot control using the above methods
with explicit error bounds

Conclusions

* smoothness allows for discrete approach to
continuous problems

e spectral intuition
 efficient, robust, general

Future work

spike-based model
heterogeneity

time domain

hardware-specific considerations

