Spectral Methods for Neural Computation

Michael Lindsey Boahen Lab Meeting January 28, 2014

- What kinds of functions can be computed effectively with neurons?

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control
- Practical suggestions for neuromorphic engineering

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control
- Practical suggestions for neuromorphic engineering
- (Analogous method for computing polynomials)

- What kinds of functions can be computed effectively with neurons?
- Method for computing sinusoids
- Robust to environmental changes
- Application: robot control
- Practical suggestions for neuromorphic engineering
- (Analogous method for computing polynomials)
- (Application: numerical integration)

2. A MOTIVATING EMPIRICAL RESULT

2. A MOTIVATING EMPIRICAL RESULT

3. A SHOT IN THE DARK

- Try adding up translated (\pm) Gaussian functions with extrema aligned with local extrema of sinusoid

3. A SHOT IN THE DARK

- Try adding up translated (\pm) Gaussian functions with extrema aligned with local extrema of sinusoid
- Surprising result! But it's no accident...

- FT
$$(\mathcal{F})$$
: $\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- FT
$$(\mathcal{F})$$
: $\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- Inverse FT
$$(\mathcal{F}^{-1})$$
: $f(x) = \mathcal{F}^{-1}(\widehat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\omega) e^{ix\omega} d\omega$

- FT
$$(\mathcal{F})$$
: $\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- Inverse FT
$$(\mathcal{F}^{-1})$$
: $f(x) = \mathcal{F}^{-1}(\widehat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\omega) e^{ix\omega} d\omega$

- Property 1: \mathcal{F} and \mathcal{F}^{-1} are linear operators

- FT
$$(\mathcal{F})$$
: $\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- Inverse FT (\mathcal{F}^{-1}) : $f(x) = \mathcal{F}^{-1}(\widehat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\omega) e^{ix\omega} d\omega$
- Property 1: \mathcal{F} and \mathcal{F}^{-1} are linear operators
- Property 2 (translation): If $f_T(x) = f(x-T)$, then $\widehat{f_T}(\omega) = e^{-i\omega T} \widehat{f}(\omega)$

- FT
$$(\mathcal{F})$$
: $\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- Inverse FT
$$(\mathcal{F}^{-1})$$
: $f(x) = \mathcal{F}^{-1}(\widehat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\omega) e^{ix\omega} d\omega$

- Property 1: \mathcal{F} and \mathcal{F}^{-1} are linear operators
- Property 2 (translation): If $f_T(x) = f(x-T)$, then $\widehat{f_T}(\omega) = e^{-i\omega T} \widehat{f}(\omega)$
- We say that a function f is Schwartz if f is smooth (infinitely differentiable) and if f and all of its derivatives decay faster than any polynomial (e.g., the Gaussian function, any smooth function of compact support)

- FT
$$(\mathcal{F})$$
: $\widehat{f}(\omega) = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$

- Inverse FT
$$(\mathcal{F}^{-1})$$
: $f(x) = \mathcal{F}^{-1}(\widehat{f})(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\omega) e^{ix\omega} d\omega$

- Property 1: \mathcal{F} and \mathcal{F}^{-1} are linear operators
- Property 2 (translation): If $f_T(x) = f(x-T)$, then $\widehat{f_T}(\omega) = e^{-i\omega T} \widehat{f}(\omega)$
- We say that a function f is Schwartz if f is smooth (infinitely differentiable) and if f and all of its derivatives decay faster than any polynomial (e.g., the Gaussian function, any smooth function of compact support)
- Property 3: \mathcal{F} and \mathcal{F}^{-1} map Schwartz functions to Schwartz functions (in fact, FT of Gaussian is Gaussian)

- Notionally: smoothness in spatial domain \leftrightarrow decay in frequency domain (also, decay in spatial domain \leftrightarrow smoothness in frequency domain)

- Notionally: smoothness in spatial domain \leftrightarrow decay in frequency domain (also, decay in spatial domain \leftrightarrow smoothness in frequency domain)
- Notionally: lack of smoothness (box function) \leftrightarrow slow decay (sinc function)

- Notionally: smoothness in spatial domain \leftrightarrow decay in frequency domain (also, decay in spatial domain \leftrightarrow smoothness in frequency domain)
- Notionally: lack of smoothness (box function) \leftrightarrow slow decay (sinc function)

- Notionally: smoothness in spatial domain \leftrightarrow decay in frequency domain (also, decay in spatial domain \leftrightarrow smoothness in frequency domain)
- Notionally: lack of smoothness (box function) \leftrightarrow slow decay (sinc function)

-Property 4 (scaling): If $f_a(x) = f(\frac{x}{a})$, then $\widehat{f}_a(\omega) = |a|\widehat{f}(a\omega)$

- Let g be a Schwartz function. Let $x_k^{(+)} = 1 + 4k$, $x_k^{(-)} = -1 + 4k$. Let $g_k^{(+)}(x) = g(x - x_k^{(+)})$ and $g_k^{(-)}(x) = g(x - x_k^{(-)})$

- Let g be a Schwartz function. Let $x_k^{(+)} = 1 + 4k$, $x_k^{(-)} = -1 + 4k$. Let $g_k^{(+)}(x) = g(x - x_k^{(+)})$ and $g_k^{(-)}(x) = g(x - x_k^{(-)})$

- Let
$$f_N = \left(g_0^{(+)} - g_0^{(-)}\right) + \sum_{k=1}^N \left(g_k^{(+)} - g_k^{(-)} + g_{-k}^{(+)} - g_{-k}^{(-)}\right)$$

- Let g be a Schwartz function. Let $x_k^{(+)} = 1 + 4k$, $x_k^{(-)} = -1 + 4k$. Let $g_k^{(+)}(x) = g(x - x_k^{(+)})$ and $g_k^{(-)}(x) = g(x - x_k^{(-)})$

- Let
$$f_N = \left(g_0^{(+)} - g_0^{(-)}\right) + \sum_{k=1}^N \left(g_k^{(+)} - g_k^{(-)} + g_{-k}^{(+)} - g_{-k}^{(-)}\right)$$

- Then for all $x \in \mathbb{R}$, as $N \to \infty$,

$$f_N(x) \to \sum_{k=0}^{\infty} (-1)^k \left[a_k \sin\left(\left(\frac{\pi}{2} + k\pi\right)x\right) - b_k \cos\left(\left(\frac{\pi}{2} + k\pi\right)x\right) \right]$$

- Let g be a Schwartz function. Let $x_k^{(+)} = 1 + 4k$, $x_k^{(-)} = -1 + 4k$. Let $g_k^{(+)}(x) = g(x - x_k^{(+)})$ and $g_k^{(-)}(x) = g(x - x_k^{(-)})$

- Let
$$f_N = \left(g_0^{(+)} - g_0^{(-)}\right) + \sum_{k=1}^N \left(g_k^{(+)} - g_k^{(-)} + g_{-k}^{(+)} - g_{-k}^{(-)}\right)$$

- Then for all $x \in \mathbb{R}$, as $N \to \infty$,

$$f_N(x) \to \sum_{k=0}^{\infty} (-1)^k \left[a_k \sin\left(\left(\frac{\pi}{2} + k\pi\right)x\right) - b_k \cos\left(\left(\frac{\pi}{2} + k\pi\right)x\right) \right]$$

$$= a_0 \sin\left(\frac{\pi}{2}x\right) - b_0 \cos\left(\frac{\pi}{2}x\right) + \dots$$

- Let g be a Schwartz function. Let $x_k^{(+)} = 1 + 4k$, $x_k^{(-)} = -1 + 4k$. Let $g_k^{(+)}(x) = g(x - x_k^{(+)})$ and $g_k^{(-)}(x) = g(x - x_k^{(-)})$

- Let
$$f_N = \left(g_0^{(+)} - g_0^{(-)}\right) + \sum_{k=1}^N \left(g_k^{(+)} - g_k^{(-)} + g_{-k}^{(+)} - g_{-k}^{(-)}\right)$$

- Then for all $x \in \mathbb{R}$, as $N \to \infty$,

$$f_N(x) \to \sum_{k=0}^{\infty} (-1)^k \left[a_k \sin\left(\left(\frac{\pi}{2} + k\pi\right)x\right) - b_k \cos\left(\left(\frac{\pi}{2} + k\pi\right)x\right) \right]$$

$$= a_0 \sin\left(\frac{\pi}{2}x\right) - b_0 \cos\left(\frac{\pi}{2}x\right) + \dots$$

where
$$a_k = \Re(\widehat{g}(\frac{\pi}{2} + k\pi)), b_k = \Im(\widehat{g}(\frac{\pi}{2} + k\pi))$$
 for all k .

6. A Surprising Consequence

- We do not require that the tuning curve g have a single local extremum

- In this case, $f_N(x) \approx a_0 \sin\left(\frac{\pi}{2}x\right)$ for N large enough.

- In this case, $f_N(x) \approx a_0 \sin\left(\frac{\pi}{2}x\right)$ for N large enough.

- Can extend to the case where g is continuous and decays faster than x^{-1} (proof expresses g as a limit of Schwartz functions)

- In this case, $f_N(x) \approx a_0 \sin\left(\frac{\pi}{2}x\right)$ for N large enough.

- Can extend to the case where g is continuous and decays faster than x^{-1} (proof expresses g as a limit of Schwartz functions)

- However, cannot guarantee that $a_0 \gg a_k$ for all $k \geq 1$. How to guarantee rapidly decaying Fourier transform?

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support
- This is like replacing the value of the function at each point with a smooth weighted average of the values at its neighboring points

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support
- This is like replacing the value of the function at each point with a smooth weighted average of the values at its neighboring points
- For example, take mollifier, $\varphi(x) = e^{\frac{-1}{1-|x|^2}} \mathbb{I}_{|x|<1}$

- We can mollify (smooth out) functions by convolving them with a smooth function of compact support
- This is like replacing the value of the function at each point with a smooth weighted average of the values at its neighboring points
- For example, take mollifier, $\varphi(x) = e^{\frac{-1}{1-|x|^2}} \mathbb{I}_{|x|<1}$

- A discrete mollification can be carried out by a simple neural network:

$$\widetilde{f}(x) = \left(\sum_{j=-n+1}^{n-1} \varphi\left(\frac{j}{n}\right)\right)^{-1} \sum_{j=-n+1}^{n-1} \varphi\left(\frac{j}{n}\right) f\left(x - j\delta\right)$$

- We demonstrate	this strategy	on a nasty	tuning curve	(hat function)

- We demonstrate this strategy on a nasty tuning curve (hat function)

Mollified hat functions obtained from above procedure (with $\delta = 0.1$) Blue: no mollification. Green: n = 4 (convex combination of 7 hat functions). Red: n = 8 (15 hat functions)

Approximation using no mollification (left), mollification with $\delta = 0.3$, n = 4 (right)

Approximation using no mollification (left), mollification with $\delta = 0.3$, n = 4 (right)

So to approximate one period of a sinusoid, we require about 14 hat-shaped tuning curves (as opposed to 2 Gaussian tuning curves)

- We know	that this	strategy	will work	in general	because o	f the

Convolution theorem:

$$\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$$

Convolution theorem:

$$\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$$

- Since a mollifier φ is Schwartz, $\mathcal{F}(\varphi)$ is Schwartz, and convolution with φ multiplies the frequency spectrum of our tuning curve by a rapidly decaying function

Convolution theorem:

$$\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$$

- Since a mollifier φ is Schwartz, $\mathcal{F}(\varphi)$ is Schwartz, and convolution with φ multiplies the frequency spectrum of our tuning curve by a rapidly decaying function
- For a sufficiently wide mollifier, $\mathcal{F}(\varphi)$ is localized enough to make our approximation hold with negligible error

Convolution theorem:

$$\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$$

- Since a mollifier φ is Schwartz, $\mathcal{F}(\varphi)$ is Schwartz, and convolution with φ multiplies the frequency spectrum of our tuning curve by a rapidly decaying function
- For a sufficiently wide mollifier, $\mathcal{F}(\varphi)$ is localized enough to make our approximation hold with negligible error
- We may need to choose sample spacing δ smaller for more irregular tuning curve shapes

- We want a tuning curve which is as localized as possible in both spatial and frequency domains

- We want a tuning curve which is as localized as possible in both spatial and frequency domains
- We can actually suggest an answer in a certain sense

- We want a tuning curve which is as localized as possible in both spatial and frequency domains
- We can actually suggest an answer in a certain sense (the Gaussian)

- We want a tuning curve which is as localized as possible in both spatial and frequency domains
- We can actually suggest an answer in a certain sense (the Gaussian)
- For $f \in L^2(\mathbb{R})$, let $P(t) = \frac{|f(t)|^2}{\|f\|_2^2}$ (so P is a pdf), and

$$\sigma^2(f) := \inf_{t_0} \int_{\mathbb{R}} (t - t_0)^2 P(t) dt,$$

so $\sigma(f)$ is the standard deviation of an RV with density P, $\frac{1}{\sigma(f)}$ measures the localization of f

- We want a tuning curve which is as localized as possible in both spatial and frequency domains
- We can actually suggest an answer in a certain sense (the Gaussian)
- For $f \in L^2(\mathbb{R})$, let $P(t) = \frac{|f(t)|^2}{\|f\|_2^2}$ (so P is a pdf), and

$$\sigma^2(f) := \inf_{t_0} \int_{\mathbb{R}} (t - t_0)^2 P(t) dt,$$

so $\sigma(f)$ is the standard deviation of an RV with density P, $\frac{1}{\sigma(f)}$ measures the localization of f

Weyl-Heisenberg Uncertainty Principle:

 $\sigma(f)\sigma(\widehat{f}) \geq \frac{1}{2}$, with equality if and only if f is a Gaussian

Review

- We can build sinusoids from smooth, rapidly decaying tuning curves
- It's okay if the tuning curves have many peaks
- ...but Gaussians are the best
- We can deal with non-smooth tuning curves
- Network structure itself encodes computation
- Robust to modification of tuning curve
- Sinusoids as basis

APPLICATION: STATISTICAL INFERENCE

- Take
$$g(x) = (2x^2 + 0.5)e^{-(x-0.32)^2}$$

APPLICATION: STATISTICAL INFERENCE

- Take $g(x) = (2x^2 + 0.5)e^{-(x-0.32)^2}$

- We approximate the *p*-th moment of g by $\sum_{n=-3}^{3} n^{p} g(n)$

$$\sum_{n=-3}^{3} n^p g(n) \quad \int_{\infty}^{\infty} u^p g(u) du$$

APPLICATION: STATISTICAL INFERENCE

- Take
$$g(x) = (2x^2 + 0.5)e^{-(x-0.32)^2}$$

- We approximate the p-th moment of g by $\sum_{n=-3}^{3} n^{p} g(n)$

$$\sum_{n=-3}^{3} n^p g(n) \quad \int_{\infty}^{\infty} u^p g(u) du$$

p = 0	3.02	3.02
p = 1	2.11	2.10
p = 2	4.32	4.32
p = 3	5.24	5.30

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$.

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^N n^p g_n,$$

where p is a non-negative even integer.

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^N n^p g_n,$$

where p is a non-negative even integer. Then for all $x \in \mathbb{R}$,

$$f_N(x) \to \sum_{n=0}^p c_n(x) x^n$$

as $N \to \infty$

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^N n^p g_n,$$

where p is a non-negative even integer. Then for all $x \in \mathbb{R}$,

$$f_N(x) \to \sum_{n=0}^p c_n(x) x^n$$

as $N \to \infty$, where

$$c_n(x) = i^{n-p} \binom{p}{n} \sum_{k \in \mathbb{Z}} \widehat{g}^{(p-n)}(2\pi k) e^{2\pi i k x}.$$

Theorem. Let g be a Schwartz function, and for all $n \in \mathbb{Z}$ let g_n be the function defined by $g_n(x) = g(x - n)$. Define

$$f_N = \sum_{n=-N}^N n^p g_n,$$

where p is a non-negative even integer. Then for all $x \in \mathbb{R}$,

$$f_N(x) \to \sum_{n=0}^p c_n(x) x^n$$

as $N \to \infty$, where

$$c_n(x) = i^{n-p} \binom{p}{n} \sum_{k \in \mathbb{Z}} \widehat{g}^{(p-n)}(2\pi k) e^{2\pi i k x}.$$

In particular, by modifying g with an appropriate horizontal scaling if necessary, we obtain the approximation (for large enough N) $f_N(x) \approx \sum_{n=0}^p c_n x^n$, where $c_n = \int u^{p-n} g(u) du$, so c_n are constants and f_N is approximately a polynomial.

- Robot control demands the computation of functions in joint positions q_0, \ldots, q_n

- Robot control demands the computation of functions in joint positions q_0, \ldots, q_n

- Generally these functions are products of functions q_i , $\sin(q_i)$, $\cos(q_i)$

- Robot control demands the computation of functions in joint positions q_0, \ldots, q_n

- Generally these functions are products of functions q_i , $\sin(q_i)$, $\cos(q_i)$

- Note that since we can square things, we can multiply things, due to the fact that $xy = \frac{1}{2}((x+y)^2 - x^2 - y^2)$

- Robot control demands the computation of functions in joint positions q_0, \ldots, q_n

- Generally these functions are products of functions q_i , $\sin(q_i)$, $\cos(q_i)$

- Note that since we can square things, we can multiply things, due to the fact that $xy = \frac{1}{2}((x+y)^2 - x^2 - y^2)$

- Thus we are equipped to do robot control using the above methods with explicit error bounds

Conclusions

- smoothness allows for discrete approach to continuous problems
- spectral intuition
- efficient, robust, general

Future work

- spike-based model
- heterogeneity
- time domain
- hardware-specific considerations