Optimization for variational Monte Carlo
with neural quantum states
MSG Seminar: Machine Learning in Science at NYU

Michael Lindsey (CIMS)
Joint work with Robert Webber (CIMS)

April 8, 2021

1/13



Setting and idea of VMC

@ Mathematically, we want to compute

where H is a Hermitian operator, 1 = t(x) = ¥(x1,...,xn) is a
high-dimensional function (the wavefunction)

@ Parametrize i) = 1y, minimize

o H
)= 2

@ Assumptions: given 6, x...

e we can query ¥y at x, i.e., evaluate ¥y(x), ‘efficiently’
o we can query Hig efficiently, i.e., evaluate [Ho] (x), ‘efficiently’
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Quantum many-body problems

e Application: determining ground-state energy / wavefunction of
quantum many-body system

@ Recent neural network-based approaches

o Quantum spin systems: complex RBM [Carleo and Troyer 2017]
o Electronic structure: neural network backflow [Luo and Clark 2019],
FermiNet [Pfau et al 2020], PauliNet [Hermann et al 2020]

@ Methodology below general to any setting for VMC

o But experiments will be on quantum spin systems, where
X1,...,XN € {:tl}
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Energy evaluation by sampling

o Expand
5 0 () [Hate] ()
E®) S P
s P el
= S P
@ Then

E(Q) = E)(Np@ [Eloc(X; 9)]

can be evaluted by sampling, where

T ) [l
) = St e = g

o Estimator satisfies zero variance property: if 1y is an eigenvector,
then Ejoc( - ;0) = E(0)
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Gradient evaluation

o Can't just autograd the formula for E(6)!
o Compute analytically, then evaluate by sampling
@ Obtain (omitting some dependence on 6 for clarity)
L O0E ¢y
& 08 v

where 1;(s) = (s) - <¢7dg >w(s) and H :=H — E(0)
g (like E) can be estlmated by sampling from py

o Estimator satisfies zero variance property again

Typically in VMC, one goes beyond first-order methods via the
‘linear method’
o Solves Rayleigh-Ritz problem on tangent space to parametric
manifold {¢p : 0§ € R"}
e Requires modification to succeed, not yet successful in practice for
NN-based ansatzes
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Rayleigh-Gauss-Newton approach

e New (but related) idea: first-order Hessian approximation
e Can compute V2E(0) = H(0) + J(6), where

“Th. H

H," — 1/}, H¢J7 JU — wlj 1721’
P P

where 1);i(s) depends on second derivatives w.r.t. 6

o Notice that J = 0 if ¢ = () is an eigenvector
o Hence approximate V2E ~ H

@ Analogy to Gauss-Newton (GN) method for nonlinear least squares

o However, the setting is different due to the Rayleigh quotient
objective
o Hence we use the term Rayleigh-Gauss-Newton (RGN)
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Need for stabilization

o Tempted to update § < § — H g
@ However, away from the optimizer, H =~ V2E is inaccurate

@ Analogous to Levenberg-Marquadt approach for GN, can consider
the update
00— (H+eH) g

o Closer to gradient descent with step size € when € > 0 is small
o Can increase € as we get closer to the optimizer

@ However, gradient descent privileges an unnatural metric on
parameter space...
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Natural gradients

e Background: stochastic reconfiguration (SR), also known as
quantum natural gradient descent
o cf., natural gradient for generative models in ML
@ But first...what is gradient descent?
@ Observe
1
0 — eVE(0) = argmin {E(Q) +(VE(0),0' —0) + —|0' — 9|2}
0’ ERn 2¢e
@ Penalty d(6,0')? = |0’ — 0|? is unnatural
o ldeally replace with
Yo e
drs(0,0') = £ <, —
[ I lloll

@ Instead expand
dFS(ov 0/)2 ~ (9/ - 9)*5(9/ - 0)3
where S = 5(0) is PSD, can be evaluated by sampling

o Modified update:
0 —STIVE(6)
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Natural RGN

o ldea: integrate natural metric into RGN framework

o Consider the update
1
6 < argmin {E(@) + (g, 0 —0) + 5(9' — ) (H+e719) (0 — 9)}
0/€Rn

o Concretely,
00— (H-c1S) g,
where H, S, g all evaluated by sampling

@ Can take ¢ larger as we approach the optimizer and H approaches
the true Hessian
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Results: deterministic evaluation

10° 10°
10721\ 102
= \
[
s 104 104
>
<
] 1076 1076
C
w \

10-8 \ 10-8 10-8
1010 1 1w 1010
0 500 1000 0 500 1000
Iteration Iteration

1000

GD
—— Natural GD

—— RGN
—— Natural RGN

Figure: Comparison of optimization methods with ‘brute-force’ deterministic
evaluation of H, S, g. (10-site 1D transverse-field Ising model, complex RBM
ansatz [Carleo and Troyer 2017].)
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Results: stochastic evaluation
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complex RBM ansatz.
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Concluding perspectives

VMC Deep learning

Overfitting also a concern,

Optimal value Matters exclusively SGD = magic

Digits of Can obtain many digits,

. , Not a major focus
accuracy indeed often require them

@ Areas for further exploration:

o Importance sampling for pg o |1 |?
o Matrix-free and/or compression approaches for huge parametrizations
e Beyond ground state: excited states (ongoing work with R. Webber),

dynamical properties (ongoing work with H. Zhang and J. Weare), ...
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