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Setting and idea of VMC

Mathematically, we want to compute

E0 = min
 2H

 ⇤H 
 ⇤ 

,

where H is a Hermitian operator,  =  (x) =  (x1, . . . , xN) is a
high-dimensional function (the wavefunction)
Parametrize  =  ✓, minimize

E (✓) :=
 ⇤
✓H ✓
 ⇤
✓ ✓

Assumptions: given ✓, x...
we can query  ✓ at x, i.e., evaluate  ✓(x), ‘efficiently’
we can query H ✓ efficiently, i.e., evaluate [H ✓] (x), ‘efficiently’
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Quantum many-body problems

Application: determining ground-state energy / wavefunction of
quantum many-body system
Recent neural network-based approaches

Quantum spin systems: complex RBM [Carleo and Troyer 2017]
Electronic structure: neural network backflow [Luo and Clark 2019],
FermiNet [Pfau et al 2020], PauliNet [Hermann et al 2020]

Methodology below general to any setting for VMC
But experiments will be on quantum spin systems, where
x1, . . . , xN 2 {±1}
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Energy evaluation by sampling

Expand

E (✓) =

P
x

 ✓(x)
⇥H ✓

⇤
(x)P

x

| ✓(x)|2 .

=

P
x

| ✓(x)|2
⇥
H ✓

⇤
(x)

 ✓(x)P
x

| ✓(x)|2

Then
E (✓) = E

x⇠⇢✓ [Eloc

(x; ✓)]

can be evaluted by sampling, where

⇢✓(x) =
| ✓(x)|2P
x

0 | ✓(x0)|2 , E
loc

(x; ✓) :=

⇥H ✓
⇤
(x)

 ✓(x)

Estimator satisfies zero variance property: if  ✓ is an eigenvector,
then E

loc

( · ; ✓) ⌘ E (✓)
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Gradient evaluation

Can’t just autograd the formula for E (✓)!
Compute analytically, then evaluate by sampling
Obtain (omitting some dependence on ✓ for clarity)

gi :=
@E

@✓i
=
 ⇤
i H 
 ⇤ 

,

where  i (s) =
@ 
@✓i

(s)�
D
 , @ @✓i

E

h , i  (s) and H := H� E (✓)

g (like E ) can be estimated by sampling from ⇢✓

Estimator satisfies zero variance property again

Typically in VMC, one goes beyond first-order methods via the
‘linear method’

Solves Rayleigh-Ritz problem on tangent space to parametric
manifold { ✓ : ✓ 2 Rn}
Requires modification to succeed, not yet successful in practice for
NN-based ansatzes
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Rayleigh-Gauss-Newton approach

New (but related) idea: first-order Hessian approximation
Can compute r2E (✓) = H(✓) + J(✓), where

Hij =
 ⇤
i H j

 ⇤ 
, Jij =

 ⇤
ijH 
 ⇤ 

,

where  ij(s) depends on second derivatives w.r.t. ✓
Notice that J = 0 if  =  (✓) is an eigenvector
Hence approximate r2E ⇡ H

Analogy to Gauss-Newton (GN) method for nonlinear least squares
However, the setting is different due to the Rayleigh quotient
objective
Hence we use the term Rayleigh-Gauss-Newton (RGN)
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Need for stabilization

Tempted to update ✓  ✓ � H�1g

However, away from the optimizer, H ⇡ r2E is inaccurate
Analogous to Levenberg-Marquadt approach for GN, can consider
the update

✓  ✓ � (H + "�1)�1g

Closer to gradient descent with step size " when " > 0 is small
Can increase " as we get closer to the optimizer

However, gradient descent privileges an unnatural metric on
parameter space...
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Natural gradients

Background: stochastic reconfiguration (SR), also known as
quantum natural gradient descent

cf., natural gradient for generative models in ML
But first...what is gradient descent?
Observe

✓ � "rE (✓) = argmin
✓02Rn

⇢
E (✓) + hrE (✓), ✓0 � ✓i+ 1

2"
|✓0 � ✓|2

�

Penalty d(✓, ✓0)2 = |✓0 � ✓|2 is unnatural
Ideally replace with

d
FS

(✓, ✓0) = \
✓

 ✓0

k ✓0k ,
 ✓
k ✓k

◆

Instead expand

d
FS

(✓, ✓0)2 ⇡ (✓0 � ✓)⇤S(✓0 � ✓),
where S = S(✓) is PSD, can be evaluated by sampling
Modified update:

✓ � "S�1rE (✓)
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Natural RGN

Idea: integrate natural metric into RGN framework
Consider the update

✓  argmin
✓02Rn

⇢
E (✓) + hg , ✓0 � ✓i+ 1

2
(✓0 � ✓)⇤(H + "�1S)(✓0 � ✓)

�

Concretely,
✓  ✓ � (H � "�1S)�1g ,

where H, S , g all evaluated by sampling
Can take " larger as we approach the optimizer and H approaches
the true Hessian
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Results: deterministic evaluation

Figure: Comparison of optimization methods with ‘brute-force’ deterministic
evaluation of H, S , g . (10-site 1D transverse-field Ising model, complex RBM
ansatz [Carleo and Troyer 2017].)
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Results: stochastic evaluation

Figure: 100-site 1D transverse-field Ising model, complex RBM ansatz.
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Concluding perspectives

VMC

Deep learning

Optimal value Matters exclusively Overfitting also a concern,
SGD = magic

Digits of
accuracy

Can obtain many digits,
indeed often require them Not a major focus

Areas for further exploration:
Importance sampling for ⇢✓ / | ✓|2
Matrix-free and/or compression approaches for huge parametrizations
Beyond ground state: excited states (ongoing work with R. Webber),
dynamical properties (ongoing work with H. Zhang and J. Weare), ...
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