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The ground-state eigenvalue problem

@ The basic quantum many-body problem is the ground state
eigenvalue problem
o Find lowest eigenvalue Eop of an operator H on a Hilbert space Q of
exponentially high dimension
e Variational formulation
Eo=  min *A
0 PEQ: Pp*p=1 ¢ ¢
@ Wide-reaching applications in chemistry, physics, and materials
science
o Include equilibrium geometry of molecules, ab initio molecular
dynamics
o Moreover, expectations of the form ¢*O¢ predict physically
observable quantities within the ground state
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Quantum spin systems

o Consider a model consisting of M sites, indexed by
ie[M]:={1,...,M}

o Classically, each site can assume a binary state s; € {0,1}

@ The classical states are then binary strings

s=(s1,...,sm) € {0,1}M

o We will consider the ‘quantum analog’ of classical combinatorial
(0-1) optimization problems
min  f(s)
s€{0,1}M
o e.g., MaxCut: f(s) =s' As, where A is an adjacency matrix for a
graph on [M]

o .Quantum wavefunctions are complex functions ¢ : {0,1}" — C

o Can be viewed as tensors in Q := C*® --- ® C? (M times) via

¢5152-“5M = ¢(S)

@ This is the Hilbert space for quantum spin—% systems
o Also the Hilbert space for electronic structure problems after passing
to the second-quantized fermionic formalism
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Algebras of operators

o Let A be the algebra of operators on Q
o Classical analog is functions on {0,1}"
@ For any subset S C [M], we have a subalgebra As of local operators

o Classical analog is functions that depend only on a subset of variables

e For quantum spin systems, As consists of operators obtained by
tensoring with the identity operator on sites in [M]\S

o For fermions, As is generated by the creation/annihilation operators
al,aifories
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Algebras of operators

@ Then given a partition of [M] into disjoint clusters C,, assume our
Hamiltonian operator can be written

I:I:ZI:IV—FZ/:L,&
vy Y6

where I:LY €A, = Ac, and I:I,Y(; € A,s .= Ac,uc, are Hermitian

o True of many physical problems, including suitable discretizations of
electronic structure problems
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State formulation

o Call a linear functional w: A — C a state on A if w(A*) = w(A)*,
w(A*A) > 0 for all Ac A, and w(Id) = 1
o w(A)=Tr [Ap] for some density operator p on Q (p = 0, Tr[p] = 1)
o Let Q, Q,, Q45 be the (convex) sets of states on A, A, and As
@ Ground state eigenvalue problem can be rephrased as
Eo = minw(H
o = minw(H)
o The optimizer w is given by w(A) = Tr [A(ﬁ(ﬁ*] = ¢*Ag, where ¢ is
the ground-state eigenvector
o Note that we can rewrite

Eo = inf {wa )+ Zw“/‘; 5) 1wy € Qy, wys € Qs are jointly representable}

o Joint representability means that the wy € Q,, wys € Qs all could
have come from the same w € Q by restriction

o We have changed exponential size of optimization space for
exponential complexity of constraints
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Semidefinite relaxation

@ We aim to relax the joint representability constraint to get a lower
bound

@ That is, enforce some necessary (but not sufficient) constraints for
joint representability:

© State: wys € Q45
o Yields independent semidefinite constraints for each pair (7, d)

© Local consistency: ws(A) = wo(A) for A € Ay, wys(A) = ws(A) for
A€ As

@ Yields linear equality constraints coupling overlapping pairs of clusters
~\T N N
© Global consistency: w {(ZW AV) (ZW AV)} >0 forany A, € A,

o Yields global semidefinite constraint coupling all pairs (v, d)
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Semidefinite relaxation

@ Concretely one obtains
minimize Z Tr[Hipi] + Z Tr [Hjipi]
{ri}s {pitici i<
subject to p,-th, 1<i<j<M,
pi = Ailpl, Pi = Aolpyl, 1<i<j<M,
Tr[pi] = 1 1 Ma
Gl{pi}, {pu} ]tO

for suitable matrices H;, Hj

e For simplicity now use 7, to index clusters, not sites

o Call it the 2-marginal relaxation, optimal value E(§2)

e Analogy of local states to marginals in classical probability
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Partial duality

@ Dualize only the global semidefinite constraint to obtain

Eéz) =sup F[X],
X0

where F[X] is optimal value of ‘effective problem’
minimize Tr[H:(X)pi] + Tr[H; Pi
{oi} ApiYics Z:[ il %;[J vil
subject to pi =0, 1<i<j<M,
pi = Ailpil, pj = A2lpi]l, 1<i<j<M,
Trp] =1, i=1,....M

o Effective problem has similar structure to original SDP

o But global semidefinite constraints omitted, exchanged for effective
contribution dependent on X

o Gives the interpretation of a quantum embedding theory
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Partial dual gradient ascent approach

e Want to perform projected gradient ascent on F[X] over X = 0
o Alternate between:

© Obtain {p;}, {pi}i<; by solving the effective problem (holding X
fixed)
© Update X + Mo (X —eG [{p,‘}7 {,O,‘j},‘<j])

In practice, we replace step (1) with a single iteration of an
augmented Lagrangian-type solver

@ Translation-invariance can be exploited for a per-iteration cost
scaling linearly in number K of clusters

o Bottleneck: K full matrix diagonalizations

@ These are decoupled and can be perfectly parallelized

Otherwise the global semidefinite constraint is generally cubic in K

Scaling is exponential in cluster size L = |C,|

o In our experiments, L < 4
o Ongoing: further (local) relaxation may enable larger clusters for ab
initio quantum chemistry
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Selected results

o I'll present results for the transverse-field Ising (TFI) and
anti-ferromagnetic Heisenberg (AFH) model

Hrrr = —hX:a,'X — Zafaf
i (i.4)

Harn = Z [a,’-(crj-( + cr,}-/aj-/ + cr,-zajz}
(i)
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TFI exact benchmark

TFI model, 20xl periodic lattice

Cluster size

——1x1
——2x1
4x1

.5

TFI model, 4x4 periodic lattice

0
g
H 1077
o
u
o
=
Sy
I /
M| / Cluster size
—6—1x1
1ot —o—2x1
2x2

12/17



AFH exact benchmark

1 x 1 clusters

2 x 1 clusters

4 x 1 clusters

0.5383

0.0521

0.0034

Table: Relaxation error per site for the AFH model on a 20 x 1 periodic lattice
for various cluster sizes.

1 x 1 clusters | 2 x 1 clusters | 2 x 2 clusters
0.6634 0.1851 0.0034

Table: Relaxation error per site for the AFH model on a 4 x 4 periodic lattice
for various cluster sizes.
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Effect of global consistency constraints

1 x 1 clusters

2 x 1 clusters

1 x 3 clusters

With global constraints

1.0439

0.3937

0.0410

W/o global constraints

3.5439

2.1897

0.8773

Table: Relaxation error per site for the AFH model on a 4 x 3 periodic lattice

for various cluster sizes
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Dependence of convergence on system size
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Dependence of convergence on cluster size

. TFI model, h=0.5, 100x1 lattice
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