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What is an MPS / TT? 

Consider a tensor

It is a matrix product state (MPS) / tensor train (TT) if it can be written:

in terms of tensor cores  are called the  
bond dimensions / TT ranks
r1, …, rK−1



What can be done with MPS / TT? 

- Basic primitives 
- Entrywise addition (ranks grow additively) 

- Entrywise multiplication (ranks grow multiplicatively) 

- MPO-MPS multiplication (ranks grow multiplicatively) 

- Optimal compression of a single rank (cubic cost in rank) 

- Major algorithms 
- DMRG-style algorithms (based on alternating block updates) for eigenvalue 

problems, linear least squares, and more 

- TDVP (time-dependent variational principle) for real/imaginary-time evolution 

- TCI (tensor cross interpolation) to construct TT from entry queries 

- References 
- Key historical references: Fannes et al (1992), Klümper et al (1992), White (1992), Perez-

Garcia et al (2007), Oseledets and Tyrtyshnikov (2009), Oseledets and Tyrtyshnikov (2010), 
Oseledets (2011) 

- Very helpful resource: tensornetwork.org



What is a QTT? 

Consider a function:

Identify variable  with binary decimal expansion x

Then we can identify  with a tensor  f T

A quantized tensor train (QTT) is a representation of 
such a tensor  as an MPS / TT  [Khoromskij (2011)]T



Why QTT? 

- Access to MPS / TT toolbox 

- DMRG-type solvers 

- TDVP-type time evolution 

- Hidden structure may be revealed 

- What structure, and is it 
structure that cannot be 
revealed by other means?

pmkielstra.github.io/Adding-Subtracting-and-Quantized-Tensor-Trains/

- QTT-specific algorithms 

- Convolution 
- Kazeev et al (2013) 

- See diagram below 

- Discrete Fourier transform  
- Dolgov et al (2012) 

- Chen et al (2023)

Can also do fast 
matvecs of QTTO 
times dense vectors 

[Corona et al (2017)]

http://pmkielstra.github.io/Adding-Subtracting-and-Quantized-Tensor-Trains/


- Exponentials have rank 1: 

-  

- Degree-N polynomials have rank N 

- Explicit construction of cores [Oseledets (2013)] 

- Techniques for bounding QTT ranks: 

- Approximate a function as a sum of Fourier modes [Dolgov et al (2012)] 

- Approximate with a polynomial [Shi and Townsend (2021)] 

- Questionable talking point: 

- If the QTT ranks are bounded, QTT offers exponential speedup over grid-
based discretization 

- It is actually nontrivial to establish that the storage cost of QTTs for “smooth” 
functions is not worse than the cost of storing a grid / basis representation 

- But we will see that this is true, and in fact QTTs can flexibly represent more 
complicated functions that are tricky to represent “classically”

exp(αx) = exp (α∑K
k=1 2−kσk) = ∏K

k=1 eα 2−kσk

What is known about QTT compression? 



Part I: Analysis of QTT compression 

M.L., Multiscale interpolative construction of quantized tensor trains, arXiv:2311.12554.



- QTT ranks tend to decay asymptotically with depth. Why? 

- The QTT ranks of a Gaussian is bounded independent of the width. Why? 

- Does not follow from Fourier series / polynomial approximation results 

- Similarly, other functions with sharp peaks have low QTT ranks 

- The QTT ranks of an -bandlimited function are , not  as 

suggested by Fourier series approximation. Why? 

- Although an explicit construction for the QTT cores of a polynomial is known, it is 
not stable because it involves coefficients in the monomial basis. Can we achieve 
a stable construction? 

- Can we derive algorithms that reveal the rank automatically even if it is not 
understood a priori?

Ω O ( Ω) O (Ω)

What is unknown about QTT compression? 



- For any bond , can view  as a matrix via  

- This is called the m-th unfolding matrix of  

- TT ranks are controlled by these ranks, cf. [Oseledets (2011)] 

- Then if we can decompose , where we control the 
number of terms in the sum, we have control over the QTT ranks 

- Later we will describe constructive algorithms for building the QTT….

m = 1,…, K − 1 T T(σ1:K) = T(σ1:m , σm+1:K)

T

T(σ1:K) ≈ ∑α Tα
L(σ1:m) Tα

R(σm+1:K)

Unfolding matrices 



Interpolative point of view 

Split argument into big piece  and small piece x≤m x>m ∈ [0, 2−m]

Define function  
on reference interval:

[0,1] → ℝ

Insert interpolative 
decomposition: 

Therefore: 

Rank of m-th unfolding matrix is bounded 
by the number of terms in this sum

Take  to be Chebyshev-Lobatto nodes on  and  
to be corresponding Lagrange interpolating functions

cα [0,1] Pα



- Standard error bounds for Chebyshev interpolation (cf. Trefethen’s book) can be 
applied under various assumptions on the smoothness of  

- Importantly, the interpolation gets easier as we go deeper into the QTT! 

- When you zoom in, things get smoother 

- Most striking conclusion in the case where  is -bandlimited 

- The m-th unfolding matrix rank is bounded via interpolation by   

- Meanwhile the m-th unfolding matrix rank is trivially bounded by  (# of rows) 

- Theorem (M.L.), stylized: For an -bandlimited function, the -ranks of the 

unfolding matrices an are uniformly bounded by  

- Thus the QTT storage complexity is not worse than grid representation

f

f Ω

∼ 2−m Ω

2m

Ω ε
O ( Ω + log(1/ε))

Decaying rank bounds 



Part II: Direct construction of QTTs 

M.L., Multiscale interpolative construction of quantized tensor trains, arXiv:2311.12554.



Direct construction 

Sα
≤m(σ1:m) ≈ f (

m

∑
k=1

2−kσk + 2−mcα)
Suppose we have constructed a tensor 

How to get next tensor ?Sα
≤m+1(σ1:m+1) have represented function on 

this grid {x≤m + 2−mcα}N
α=0

want to represent functions on the two grids 
, for each {x≤m + 2−(m+1)σm+1 + 2−(m+1)cβ}N

β=0
σm+1 ∈ {0,1}



Direct construction 

Construct a tensor core  which interpolates wide grid to left or right 
narrow grid, depending on whether  or 

Aαβ(σ)
σ = 0 1

Construct full QTT by 
repeatedly attaching this core 
(with boundary conditions):

σ = 0



Rank-revealing construction 

M

∑
i,j=1

hij a†
i aj +

1
2

M

∑
i,j,k,l=1

vijkl a†
i a†

j al ak

- Approximate

Can modify the construction to reveal the rank on the fly as we attach cores

Usually this is dangerous! But we are protected by the fact that the tail of A cores act as a 
Chebyshev interpolator, which can only amplify entrywise errors by the Lebesgue constant 
of the interpolation scheme (cf. Trefethen’s book). See preprint for rigorous statement.



Improvements and extensions 

- Can replace dense interpolating cores  with sparse approximations in the large  
limit (where  is the size of the interpolating grid), cf. [Boyd (1992)] 

- Reduces the cost of rank-revealing algorithm to , where  is revealed 
rank 

- Extensions to multivariate case 

- Different conventions (interleaved / serial ordering) are considered 

- Ye (speaking later in this session) et al have considered many options in 
practice 

- Can “invert” the construction (recover interpolating grid values from QTT) by 
attaching a particular core  which is a generalized inverse of 

A N
N

O(Nr2) r

G A



Multiresolution construction 

Suppose that we can construct nested dyadic intervals (pictured in red) on 
which interpolation is “dangerous” (due to poor quantitative smoothness)

- For the complementary intervals (green) at each level, suppose that N-
point interpolation is accurate 

- Then we can construct an accurate QTT of rank N + q, where q is the 
maximum number of dangerous subintervals at each level (here q = 1) 

- “Cellular automaton” type construction: bide your time until you land 
in a safe subinterval, then interpolate all the way down



One simple demonstration 

Compare to TCI 
( J = 25 )

Stable results 
where TCI fails 

( N = 2J )

Random 
Fourier series



Further demonstrations 

- See preprint for further demonstrations! 

- Sparse cores, construction inversion, multivariate cases, multiresolution 
construction (validated to be sharp for Gaussians, etc.)



Part II: MPO compression of the DFT 

Jielun Chen and M.L., Direct interpolative construction of the discrete Fourier transform 
as a matrix product operator, arXiv:2404.03182.



The DFT as a quantized operator 

Consider the discrete Fourier transform:

Identify indices with binary expansions 
(bit-reversing the column index!)

Then we can identify F with a tensor:



Previous analysis of DFT as MPO 

- “Superfast Fourier transform” [Dolgov et al (2012)] 

- Applies DFT by interleaving MPO-MPS products with MPS compressions 

- “QFT has low entanglement” [Chen et al (2023)] 

- Takes point of view of quantum circuit representation of the quantum Fourier 
transform (QFT) 

- Proved that the MPO for the DFT is actually low-rank 

- Explicit and efficient construction of MPO as DFT still lacking!



New interpolative rank bound 



Explicit MPO construction 

How to get next tensor 
?Fα

m+1(σ1:m+1, τ1:m+1)



Additional comments 

- Error bound (cf. preprint) for explicit MPO construction nearly matches bounds for 
unfolding matrix ranks 

- Connection between QTT and the complementary low rank (CLR) properties are 
noted 

- Also consider connections to the approximate quantum Fourier transform (AQFT) 

- The AQFT simply leaves out long-range gates from QFT which contribute 
small phases 

- It turns out that the AQFT can be recovered exactly in our framework using a 
different (piecewise constant) interpolation scheme



Conclusions 

- Interpolation is the right framework for leveraging 
smoothness to understand the detailed structure of 
QTT ranks, theoretically and practically 

- It also helps us understand how to construct the DFT 
directly as an MPO 

- Functions that can be represented efficiently with a 
tree-structured multiresolution grid are low-rank 
QTTs 

- So are their Fourier transforms 

- We can go back and forth between (multires) grids 
and QTTs (zipping and unzipping) 

- Questions: 

- Are there any interesting / useful functions 
which cannot be treated sharply with this 
analysis? 

- Can we get end-to-end QTT advantage over 
classical methods on a well-defined numerical 
analysis problem? What would this mean?

All aboard this actual 
quantized tensor train

Thank you for your attention!

arXiv:2311.12554

arXiv:2404.03182


