
Michael Lindsey

UC Berkeley

Direct interpolative construction of
quantized tensor trains

Tensor4All Meeting

April 22, 2024

What is an MPS / TT?

Consider a tensor

It is a matrix product state (MPS) / tensor train (TT) if it can be written:

in terms of tensor cores are called the
bond dimensions / TT ranks
r1, …, rK−1

What can be done with MPS / TT?

- Basic primitives

- Entrywise addition (ranks grow additively)

- Entrywise multiplication (ranks grow multiplicatively)

- MPO-MPS multiplication (ranks grow multiplicatively)

- Optimal compression of a single rank (cubic cost in rank)

- Major algorithms

- DMRG-style algorithms (based on alternating block updates) for eigenvalue

problems, linear least squares, and more

- TDVP (time-dependent variational principle) for real/imaginary-time evolution

- TCI (tensor cross interpolation) to construct TT from entry queries

- References

- Key historical references: Fannes et al (1992), Klümper et al (1992), White (1992), Perez-

Garcia et al (2007), Oseledets and Tyrtyshnikov (2009), Oseledets and Tyrtyshnikov (2010),
Oseledets (2011)

- Very helpful resource: tensornetwork.org

What is a QTT?

Consider a function:

Identify variable with binary decimal expansion x

Then we can identify with a tensor f T

A quantized tensor train (QTT) is a representation of
such a tensor as an MPS / TT [Khoromskij (2011)]T

Why QTT?

- Access to MPS / TT toolbox

- DMRG-type solvers

- TDVP-type time evolution

- Hidden structure may be revealed

- What structure, and is it
structure that cannot be
revealed by other means?

pmkielstra.github.io/Adding-Subtracting-and-Quantized-Tensor-Trains/

- QTT-specific algorithms

- Convolution

- Kazeev et al (2013)

- See diagram below

- Discrete Fourier transform

- Dolgov et al (2012)

- Chen et al (2023)

Can also do fast
matvecs of QTTO
times dense vectors

[Corona et al (2017)]

http://pmkielstra.github.io/Adding-Subtracting-and-Quantized-Tensor-Trains/

- Exponentials have rank 1:

-

- Degree-N polynomials have rank N

- Explicit construction of cores [Oseledets (2013)]

- Techniques for bounding QTT ranks:

- Approximate a function as a sum of Fourier modes [Dolgov et al (2012)]

- Approximate with a polynomial [Shi and Townsend (2021)]

- Questionable talking point:

- If the QTT ranks are bounded, QTT offers exponential speedup over grid-
based discretization

- It is actually nontrivial to establish that the storage cost of QTTs for “smooth”
functions is not worse than the cost of storing a grid / basis representation

- But we will see that this is true, and in fact QTTs can flexibly represent more
complicated functions that are tricky to represent “classically”

exp(αx) = exp (α∑K
k=1 2−kσk) = ∏K

k=1 eα 2−kσk

What is known about QTT compression?

Part I: Analysis of QTT compression

M.L., Multiscale interpolative construction of quantized tensor trains, arXiv:2311.12554.

- QTT ranks tend to decay asymptotically with depth. Why?

- The QTT ranks of a Gaussian is bounded independent of the width. Why?

- Does not follow from Fourier series / polynomial approximation results

- Similarly, other functions with sharp peaks have low QTT ranks

- The QTT ranks of an -bandlimited function are , not as

suggested by Fourier series approximation. Why?

- Although an explicit construction for the QTT cores of a polynomial is known, it is
not stable because it involves coefficients in the monomial basis. Can we achieve
a stable construction?

- Can we derive algorithms that reveal the rank automatically even if it is not
understood a priori?

Ω O (Ω) O (Ω)

What is unknown about QTT compression?

- For any bond , can view as a matrix via

- This is called the m-th unfolding matrix of

- TT ranks are controlled by these ranks, cf. [Oseledets (2011)]

- Then if we can decompose , where we control the
number of terms in the sum, we have control over the QTT ranks

- Later we will describe constructive algorithms for building the QTT….

m = 1,…, K − 1 T T(σ1:K) = T(σ1:m , σm+1:K)

T

T(σ1:K) ≈ ∑α Tα
L(σ1:m) Tα

R(σm+1:K)

Unfolding matrices

Interpolative point of view

Split argument into big piece and small piece x≤m x>m ∈ [0, 2−m]

Define function
on reference interval:

[0,1] → ℝ

Insert interpolative
decomposition:

Therefore:

Rank of m-th unfolding matrix is bounded
by the number of terms in this sum

Take to be Chebyshev-Lobatto nodes on and
to be corresponding Lagrange interpolating functions

cα [0,1] Pα

- Standard error bounds for Chebyshev interpolation (cf. Trefethen’s book) can be
applied under various assumptions on the smoothness of

- Importantly, the interpolation gets easier as we go deeper into the QTT!

- When you zoom in, things get smoother

- Most striking conclusion in the case where is -bandlimited

- The m-th unfolding matrix rank is bounded via interpolation by

- Meanwhile the m-th unfolding matrix rank is trivially bounded by (# of rows)

- Theorem (M.L.), stylized: For an -bandlimited function, the -ranks of the

unfolding matrices an are uniformly bounded by

- Thus the QTT storage complexity is not worse than grid representation

f

f Ω

∼ 2−m Ω

2m

Ω ε
O (Ω + log(1/ε))

Decaying rank bounds

Part II: Direct construction of QTTs

M.L., Multiscale interpolative construction of quantized tensor trains, arXiv:2311.12554.

Direct construction

Sα
≤m(σ1:m) ≈ f (

m

∑
k=1

2−kσk + 2−mcα)
Suppose we have constructed a tensor

How to get next tensor ?Sα
≤m+1(σ1:m+1) have represented function on

this grid {x≤m + 2−mcα}N
α=0

want to represent functions on the two grids
, for each {x≤m + 2−(m+1)σm+1 + 2−(m+1)cβ}N

β=0
σm+1 ∈ {0,1}

Direct construction

Construct a tensor core which interpolates wide grid to left or right
narrow grid, depending on whether or

Aαβ(σ)
σ = 0 1

Construct full QTT by
repeatedly attaching this core
(with boundary conditions):

σ = 0

Rank-revealing construction

M

∑
i,j=1

hij a†
i aj +

1
2

M

∑
i,j,k,l=1

vijkl a†
i a†

j al ak

- Approximate

Can modify the construction to reveal the rank on the fly as we attach cores

Usually this is dangerous! But we are protected by the fact that the tail of A cores act as a
Chebyshev interpolator, which can only amplify entrywise errors by the Lebesgue constant
of the interpolation scheme (cf. Trefethen’s book). See preprint for rigorous statement.

Improvements and extensions

- Can replace dense interpolating cores with sparse approximations in the large
limit (where is the size of the interpolating grid), cf. [Boyd (1992)]

- Reduces the cost of rank-revealing algorithm to , where is revealed
rank

- Extensions to multivariate case

- Different conventions (interleaved / serial ordering) are considered

- Ye (speaking later in this session) et al have considered many options in
practice

- Can “invert” the construction (recover interpolating grid values from QTT) by
attaching a particular core which is a generalized inverse of

A N
N

O(Nr2) r

G A

Multiresolution construction

Suppose that we can construct nested dyadic intervals (pictured in red) on
which interpolation is “dangerous” (due to poor quantitative smoothness)

- For the complementary intervals (green) at each level, suppose that N-
point interpolation is accurate

- Then we can construct an accurate QTT of rank N + q, where q is the
maximum number of dangerous subintervals at each level (here q = 1)

- “Cellular automaton” type construction: bide your time until you land
in a safe subinterval, then interpolate all the way down

One simple demonstration

Compare to TCI

(J = 25)

Stable results
where TCI fails

(N = 2J)

Random
Fourier series

Further demonstrations

- See preprint for further demonstrations!

- Sparse cores, construction inversion, multivariate cases, multiresolution
construction (validated to be sharp for Gaussians, etc.)

Part II: MPO compression of the DFT

Jielun Chen and M.L., Direct interpolative construction of the discrete Fourier transform
as a matrix product operator, arXiv:2404.03182.

The DFT as a quantized operator

Consider the discrete Fourier transform:

Identify indices with binary expansions
(bit-reversing the column index!)

Then we can identify F with a tensor:

Previous analysis of DFT as MPO

- “Superfast Fourier transform” [Dolgov et al (2012)]

- Applies DFT by interleaving MPO-MPS products with MPS compressions

- “QFT has low entanglement” [Chen et al (2023)]

- Takes point of view of quantum circuit representation of the quantum Fourier
transform (QFT)

- Proved that the MPO for the DFT is actually low-rank

- Explicit and efficient construction of MPO as DFT still lacking!

New interpolative rank bound

Explicit MPO construction

How to get next tensor
?Fα

m+1(σ1:m+1, τ1:m+1)

Additional comments

- Error bound (cf. preprint) for explicit MPO construction nearly matches bounds for
unfolding matrix ranks

- Connection between QTT and the complementary low rank (CLR) properties are
noted

- Also consider connections to the approximate quantum Fourier transform (AQFT)

- The AQFT simply leaves out long-range gates from QFT which contribute
small phases

- It turns out that the AQFT can be recovered exactly in our framework using a
different (piecewise constant) interpolation scheme

Conclusions

- Interpolation is the right framework for leveraging
smoothness to understand the detailed structure of
QTT ranks, theoretically and practically

- It also helps us understand how to construct the DFT
directly as an MPO

- Functions that can be represented efficiently with a
tree-structured multiresolution grid are low-rank
QTTs

- So are their Fourier transforms

- We can go back and forth between (multires) grids
and QTTs (zipping and unzipping)

- Questions:

- Are there any interesting / useful functions
which cannot be treated sharply with this
analysis?

- Can we get end-to-end QTT advantage over
classical methods on a well-defined numerical
analysis problem? What would this mean?

All aboard this actual
quantized tensor train

Thank you for your attention!

arXiv:2311.12554

arXiv:2404.03182

