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Our setting

We consider the linear eigenvalue problem (lowest n eigenvalues)
(A—i—B)Ui:)\Z"Ui, 1=1,...,n,

where
» A, B € CVNN Hermitian, N > n > 1
> [|All2 > [|B]|2
» B < 0 (note: can be guaranteed by level shifting)

» A-multiplies are ‘easy,” B-multiplies are ‘hard’ (bottleneck)



Hartree-Fock-like equations
By HF-like equations we mean the nonlinear eigenvalue problem

H[Ply; = <—;A + Vion + Vixe[P] + VX[P]> Vi = e,

Ne
/ HE) () dr = 65, Plex) = 3 wi(r) (),
=1

where

v

N, is the number of electrons

v

P is the density matrix, an orthogonal projector of rank N,

v

Vixc|[P] depends only on the density p(r) := P(r,r) (includes
Hartree and exchange-correlation contributions)
» Vx is an integral operator with kernel

Vx[P](r,r") = —P(r,r)K(r,1r')

v

In HF theory, K(r,r') = 1/|r — /|



Hartree-Fock-like equations

» Note: —Vx[P] is a Hadamard product of positive definite
operators, hence Vx[P] < 0

» But Vx[P] is dense and not low-rank
» Vx|[P]-multiplies often take over 95% of computational time
» Density matrix P needs to be computed self-consistently

» Can fix P so that H|[P] is fixed and solve linear eigenvalue
problem

> lterate to solve nonlinear fixed-point problem for
self-consistent P

» Numerical discretization of linear problem yields matrix of
form A+ B as above (B < 0)



Reminder: our setting

We consider the linear eigenvalue problem (lowest n eigenvalues)
(A4+ B)v; = Nwg, i=1,...,n,

where

» A, B e CV*N Hermitian, N > n > 1
|All2 > (| Bll2
» B<0

A-multiplies are ‘easy,” B-multiplies are ‘hard’

v

v

v

Also, define gap A\ := A1 — A\



Adaptively compressing operators

» Let V = [vy,...,vy], linearly independent columns
» Define B[V] =:= BV(V*BV)"'V*B (rank n)
» Observe B[V]V = BV

» Therefore, if v1,...,v, are the lowest n eigenvectors of
A+ B..

» then they are eigenvectors of A + B[V] as well!
» But are they the lowest eigenvectors?

> Note: keep this convention for V



Adaptively compressing operators

» Let P be orthogonal projector onto span[V]

» P encodes subspace as a matrix, useful for analyzing
convergence of subspaces

» Compression depends only on subspace, define B[P| = B[V]



Adaptive compression method

» Solve

(A+ B[V(k)])vgkﬂ) = )\(kﬂ)vgkﬂ), i=1,...,n,

)

vk — [Ug’f) -
P®*) orthogonal projector onto span[V (¥)]
» In other words, given P¥), define P(*+1) to be the orthogonal
projector onto the span of the lowest n eigenvectors of
A+ B[PW)]
» Hopefully P*¥) — p
> Solve ‘easy’ eigenvalue problem at each step, though we have

exchanged a linear eigenvalue problem for a nonlinear
fixed-point iteration!

> Need to know that P is a fixed point, equivalently that
‘lowest-n space’ of A+ B[P] is the same as that of A+ B

» Would be true if B[P] = B (more on this later)



Extensions

> An extension of results allows us to consider ‘metallic’ case of
nearly degenerate eigenvalues

» For linear problems, can accelerate adaptive compression fixed
point iteration via DIIS ideas

» For (nonlinear) HF-like equations, can delay update of
adaptively compressed operator to outer loop for additional
speedup

» Framework can be adapted to other structured eigenvalue
problems



Numerical results (linear problem)
[also joint with Jeffmin Lin at UC Berkeley]
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Numerical results (linear problem)
[also joint with Jeffmin Lin at UC Berkeley]
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Numerical results (nonlinear: DFT with hybrid functional)

> inner iteration to converge density p(r)
» outer iteration to convergence density matrix P(r,r’)
» only update compressed exchange operator once per outer

loop

(a) (b) (c) (d)

y
Sig (1X1X1)

Sigs (2X2X2)  Sijeg(5X5X5)  Sigges (BXBX8E)

Figure 3. Geometric structures of bulk silicon systems used for the
ACE formulation in PWDFT. (a) Sig in the unitcell, (b) Sig, in the 2 X
2 X 2 supercell, (c) Sijg in the S X S X S supercell, and (d) Sisge in
the 8 X 8 X 8 supercell.

conventional
it ACE HSE06 (LOBPCG) HSE06 (LOBPCG)
no. outer SCE no. inner SCF  time (s)  no. inner SCF  time (s)
1 6 356 6 2518
2 N 320 N 2044
3 N 308 4 1665

Hu, Lin, Banerjee, Vechrarynski, & Yang. JCTC (2017)



Optimality of adaptive compression

Theorem (Optimality)

For B <0 and any N x n matrix U with linearly independent
columns, the adaptive compression B[U] is the unique rank-n
Hermitian matrix that agrees with B on span[U]. Furthermore,
B < B[U] =< 0.

Helpful observation: matrix of B[U] (with respect to
span[U] x span[U]* block structure) is

( By Bia )
Bik2 BT2BﬁlBl2



Local convergence

Theorem (Local convergence)

The fixed point iteration P¥) — P& +1) converges locally to
P =VV*. The number of matrix-vector multiplications Bv
needed for k steps of fixed point iteration is nk. Starting from
PO, the asymptotic convergence rate is

| B]|2
[P —PWy SAFIP - POy, where v < — ==
[ Bll2 + Ag

Note: rate of convergence does not depend on ||A||2 (stable under
refinement of discretization if A is a differential operator). Can
also obtain sharp expression.



|dea of proof

» Let § be iteration map of adaptive compression method, so
5. Pk 5 plktl)

» Repeated application of § induces discrete-time dynamical
system on the set of rank-n orthogonal projectors,

equivalently the set of n-dimensional subspaces or the
Grassmann manifold Gr(n,C")

> Linearize of dynamical system at fixed point P by computing
Jacobian of § in appropriate coordinates

» Bound eigenvalues of Jacobian to get asymptotic convergence
rate



Global convergence

Theorem (Global convergence)

For almost every pair of Hermitian matrices A, B with B < 0, the
fixed point iteration § : P%) s P*+1) converges globally to
P = VV* for almost every initial guess P(©).

Simple counterexamples show that there can exist 'bad’ fixed
points, so one cannot hope for convergence from arbitrary initial
guess.



|dea of proof

» Eigenvalue monotonicity: each of the bottom n eigenvalues
)\gk), o )\7(1k) of A+ E[P(k_l)] is monotonically
non-increasing in k (hence convergent)

» Change of P() across one iteration can be controlled by the
change of Y"1, )\Ek)

» So when k is large, S(P(k)) ~ P®) ie. the point Pk is
almost fixed by the mapping §

» Not yet enough to directly imply by general considerations
that the sequence P) is convergent, but one might hope that
a point that is close to being fixed is close to some fixed point!

» This is true



|dea of proof

>

Fixed points Py are in particular orthogonal projectors onto
invariant subspaces of A + B

For generic A, B, there are finitely many such P; and

A + B[Py] has a spectral gap

Already know that P*) is close to some fixed point for k
large. Fixed points are finite in number (hence isolated), so
this implies that P(*) converges to some fixed point

Use spectral gap to perform linearization about all fixed points
Only the desired fixed point is stable; stable manifold of all
others has positive codimension (hence measure zero)
Convergence to bad fixed point would mean that dynamics
live on such a stable manifold for k& large enough

Thus want to show that the preimage under § of a
measure-zero set has measure zero

This is the egg on barn lemma (technical; § not a
diffeomorphism, nor even continuous)



Conclusion

v

Introduced adaptive compression framework

v

Applications to linear and nonlinear eigenvalue problems

» Compression operation has nice linear-algebraic properties

v

Convergence theory
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