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I Setup and motivation

I Describe the adaptive compression method

I Numerical results

I Discuss key properties of adaptively compressed operators
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I Global convergence

I See Lin Lin, M.L. Comm. Pure Appl. Math (in press)



Our setting

We consider the linear eigenvalue problem (lowest n eigenvalues)

(A+B)vi = λivi, i = 1, . . . , n,

where

I A,B ∈ CN×N Hermitian, N � n� 1

I ‖A‖2 � ‖B‖2
I B ≺ 0 (note: can be guaranteed by level shifting)

I A-multiplies are ‘easy,’ B-multiplies are ‘hard’ (bottleneck)



Hartree-Fock-like equations
By HF-like equations we mean the nonlinear eigenvalue problem

H[P ]ψi =

(
−1

2
∆ + Vion + VHxc[P ] + VX [P ]

)
ψi = εiψi,∫

ψ∗i (r)ψj(r) dr = δij , P (r, r′) =

Ne∑
i=1

ψi(r)ψ∗i (r′),

where

I Ne is the number of electrons

I P is the density matrix, an orthogonal projector of rank Ne

I VHxc[P ] depends only on the density ρ(r) := P (r, r) (includes
Hartree and exchange-correlation contributions)

I VX is an integral operator with kernel

VX [P ](r, r′) = −P (r, r′)K(r, r′)

I In HF theory, K(r, r′) = 1/|r− r′|



Hartree-Fock-like equations

I Note: −VX [P ] is a Hadamard product of positive definite
operators, hence VX [P ] ≺ 0

I But VX [P ] is dense and not low-rank

I VX [P ]-multiplies often take over 95% of computational time

I Density matrix P needs to be computed self-consistently

I Can fix P so that H[P ] is fixed and solve linear eigenvalue
problem

I Iterate to solve nonlinear fixed-point problem for
self-consistent P

I Numerical discretization of linear problem yields matrix of
form A+B as above (B ≺ 0)



Reminder: our setting

We consider the linear eigenvalue problem (lowest n eigenvalues)

(A+B)vi = λivi, i = 1, . . . , n,

where

I A,B ∈ CN×N Hermitian, N � n� 1

I ‖A‖2 � ‖B‖2
I B ≺ 0

I A-multiplies are ‘easy,’ B-multiplies are ‘hard’

I Also, define gap λg := λn+1 − λn



Adaptively compressing operators

I Let V = [v1, . . . , vn], linearly independent columns

I Define B[V ] =:= BV (V ∗BV )−1V ∗B (rank n)

I Observe B[V ]V = BV

I Therefore, if v1, . . . , vn are the lowest n eigenvectors of
A+B...

I then they are eigenvectors of A+B[V ] as well!

I But are they the lowest eigenvectors?

I Note: keep this convention for V



Adaptively compressing operators

I Let P be orthogonal projector onto span[V ]

I P encodes subspace as a matrix, useful for analyzing
convergence of subspaces

I Compression depends only on subspace, define B[P ] = B[V ]



Adaptive compression method

I Solve

(A+B[V (k)])v
(k+1)
i = λ

(k+1)
i v

(k+1)
i , i = 1, . . . , n,

V (k) = [v
(k)
1 · · · v

(k)
n ]

P (k) orthogonal projector onto span[V (k)]

I In other words, given P (k), define P (k+1) to be the orthogonal
projector onto the span of the lowest n eigenvectors of
A+B[P (k)]

I Hopefully P (k) → P

I Solve ‘easy’ eigenvalue problem at each step, though we have
exchanged a linear eigenvalue problem for a nonlinear
fixed-point iteration!

I Need to know that P is a fixed point, equivalently that
‘lowest-n space’ of A+B[P ] is the same as that of A+B

I Would be true if B[P ] � B (more on this later)



Extensions

I An extension of results allows us to consider ‘metallic’ case of
nearly degenerate eigenvalues

I For linear problems, can accelerate adaptive compression fixed
point iteration via DIIS ideas

I For (nonlinear) HF-like equations, can delay update of
adaptively compressed operator to outer loop for additional
speedup

I Framework can be adapted to other structured eigenvalue
problems



Numerical results (linear problem)
[also joint with Jeffmin Lin at UC Berkeley]

A = −1

2
∆ + V, B(x, y) = 1/

√
1 + |x− y|2



Numerical results (linear problem)
[also joint with Jeffmin Lin at UC Berkeley]

A = −1

2
∆ + V, B(x, y) = 1/

√
1 + |x− y|2



Numerical results (nonlinear: DFT with hybrid functional)
I inner iteration to converge density ρ(r)
I outer iteration to convergence density matrix P (r, r′)
I only update compressed exchange operator once per outer

loop

Hu, Lin, Banerjee, Vechrarynski, & Yang. JCTC (2017)



Optimality of adaptive compression

Theorem (Optimality)

For B ≺ 0 and any N × n matrix U with linearly independent
columns, the adaptive compression B[U ] is the unique rank-n
Hermitian matrix that agrees with B on span[U ]. Furthermore,
B � B[U ] � 0.

Helpful observation: matrix of B[U ] (with respect to
span[U ]× span[U ]⊥ block structure) is(

B11 B12

B∗12 B∗12B
−1
11 B12

)



Local convergence

Theorem (Local convergence)

The fixed point iteration P (k) 7→ P (k+1) converges locally to
P = V V ∗. The number of matrix-vector multiplications Bv
needed for k steps of fixed point iteration is nk. Starting from
P (0), the asymptotic convergence rate is

‖P − P (k)‖2 . γk‖P − P (0)‖2, where γ ≤ ‖B‖2
‖B‖2 + λg

.

Note: rate of convergence does not depend on ‖A‖2 (stable under
refinement of discretization if A is a differential operator). Can
also obtain sharp expression.



Idea of proof

I Let F be iteration map of adaptive compression method, so
F : P (k) → P (k+1)

I Repeated application of F induces discrete-time dynamical
system on the set of rank-n orthogonal projectors,
equivalently the set of n-dimensional subspaces or the
Grassmann manifold Gr(n,CN )

I Linearize of dynamical system at fixed point P by computing
Jacobian of F in appropriate coordinates

I Bound eigenvalues of Jacobian to get asymptotic convergence
rate



Global convergence

Theorem (Global convergence)

For almost every pair of Hermitian matrices A,B with B ≺ 0, the
fixed point iteration F : P (k) 7→ P (k+1) converges globally to
P = V V ∗ for almost every initial guess P (0).

Simple counterexamples show that there can exist ‘bad’ fixed
points, so one cannot hope for convergence from arbitrary initial
guess.



Idea of proof

I Eigenvalue monotonicity: each of the bottom n eigenvalues

λ
(k)
1 , . . . , λ

(k)
n of A+B[P (k−1)] is monotonically

non-increasing in k (hence convergent)

I Change of P (k) across one iteration can be controlled by the

change of
∑n

i=1 λ
(k)
i

I So when k is large, F(P (k)) ≈ P (k), i.e., the point P (k) is
almost fixed by the mapping F

I Not yet enough to directly imply by general considerations
that the sequence P (k) is convergent, but one might hope that
a point that is close to being fixed is close to some fixed point!

I This is true



Idea of proof

I Fixed points Pf are in particular orthogonal projectors onto
invariant subspaces of A+B

I For generic A,B, there are finitely many such Pf and
A+B[Pf ] has a spectral gap

I Already know that P (k) is close to some fixed point for k
large. Fixed points are finite in number (hence isolated), so
this implies that P (k) converges to some fixed point

I Use spectral gap to perform linearization about all fixed points

I Only the desired fixed point is stable; stable manifold of all
others has positive codimension (hence measure zero)

I Convergence to bad fixed point would mean that dynamics
live on such a stable manifold for k large enough

I Thus want to show that the preimage under F of a
measure-zero set has measure zero

I This is the egg on barn lemma (technical; F not a
diffeomorphism, nor even continuous)



Conclusion

I Introduced adaptive compression framework

I Applications to linear and nonlinear eigenvalue problems

I Compression operation has nice linear-algebraic properties

I Convergence theory
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