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Section 1

Review of optimal transport and numerical
methods



Monge problem

I Monge optimal transport problem:

minimize

∫
X
c(x, T (x)) dµ(x)

subject to T measurable, T#µ = ν.

I Kantorovich is a relaxation (always feasible)

I Exist unique coinciding solutions to each problem when
c(x, y) = |x− y|2, µ = f dx, ν = g dy on X = Y = Rn



Brenier’s theorem

I X = Y = Rn. Roughly speaking, under mild technical
conditions on µ, ν, Monge-Kantorovich problem is uniquely
solved by transport map T = ∇ϕ, where ϕ is convex

I Conversely, gradients of convex functions are optimal maps
from µ to T#µ



Review of numerical methods

I LP, assignment problems

I semi-discrete (Lévy 2015)

I entropic regularization (Cuturi 2013)

I sparse LP (Oberman-Ruan 2015, Schmitzer 2016)

I PDE methods (Benamou-Brenier 2000,
Benamou-Froese-Oberman 2014)



Section 2

Recasting the Monge-Ampére equation for OT
as a (convex) optimization problem



The Monge-Ampère equation

I Ω,Λ open and bounded in Rn, consider optimal transport
problem from source measure µ on Ω with density f to target
measure ν on Λ with density g

I Caffarelli’s regularity theory for Λ convex

I Equivalently, find convex ψ solving second boundary value
problem for the Monge–Ampère equation

det
(
∇2ψ(x)

)
=

f(x)

g (∇ψ(x))
, x ∈ Ω,

∇ψ(Ω) = Λ.

(1)



A cute observation

I Suppose ψ convex is a ‘subsolution’ of the MAE, i.e.,

det
(
∇2ψ(x)

)
≥ f(x)

g (∇ψ(x))
, x ∈ Ω,

∇ψ(Ω) ⊂ Λ.

(2)

I Then ψ is a solution!



A cute transformation

I Equivalently, find convex ψ such that

−det 1/n
(
∇2ψ(x)

)
+ f1/n(x)g−1/n (∇ψ(x)) ≤ 0, x ∈ Ω,

∇ψ(Ω) ⊂ Λ.
(3)

I Notice that LHS of inequality is ‘convex’ in ψ if g−1/n is
convex. This holds in particular if g is log-concave (which
holds in particular if g is uniform on convex Λ)



A Monge-Ampére optimization problem

I So the convex potential is the solution of:

minimize
ψ

∫
Ω

max
{

0,−det 1/n (∇2ψ(x)
)

+ f1/n(x)g−1/n (∇ψ(x))
}

subject to ψ convex

∇ψ(Ω) ⊂ Λ

I If g−1/n is convex, then this can be thought of as a convex
optimization problem



Section 3

Discretization



Discretization

I Many ways to discretize

I First we triangulate the domain into simplices {Si}Mi=1 with
vertex set {xj}Nj=1, where Si = Conv{xi0 , . . . , xin}

I Example:



A discrete Monge-Ampére optimization problem

The discrete Monge–Ampère optimization problem (DMAOP)
associated to the data (Ω,Λ, f, g, {xj}Nj=1, {Si}Mi=1) is a natural
discretization of the continuous MAOP. Optimization variables are:

I ψj variable for Brenier potential value at point xj
I ηj variable for subdifferential of Brenier potential at xj
I convexity enforced via ψj ≥ ψi+ 〈ηi, xj − xi〉 , i, j = 1, . . . , N

I convexity constraint inefficient, can be made more efficient in
practice later



Section 4

Convergence result



What do we want to converge?

I We need to extract something to converge

I Define

aj(x) := ψj + 〈ηj , x− xj〉, j = 1, . . . , N, (4)

so aj is the (unique) affine function with aj(xj) = ψj and
∇aj(xj) = ηj .

I Define the optimization potential by

φ(x) := b+ max
j=1,...N

aj(x), (5)

where b ∈ R is chosen such that φ(0) = 0.



Convergence result

Theorem (L.-Rubinstein, arXiv:1603.07435)

Let f ∈ C0,α(Ω), g ∈ C0,α(Λ) and suppose Λ is convex. Let{
{S(k)

i }
M(k)
i=1

}
k∈N be a ‘nice’ sequence of triangulations. Let ϕ be

the the unique Brenier solution of our Monge–Ampère equation
with ϕ(0) = 0, and let φ(k) be the optimization potentials obtained
from the DMAOP. Then

φ(k) → ϕ uniformly on Ω,

and ∂φ(k) → ∇ϕ pointwise on Ω. In particular, ∇φ(k) converges
pointwise almost everywhere to the optimal transport map pushing
forward µ = f dx to ν = g dx.



Main ideas of proof

I Show that optimal costs ck → 0.

I Assume φ(k) → φ uniformly for some φ. WTS φ = ϕ.

I Mollify the sequence to get φ
(k)
ε → φε (?).

I Use ck → 0 together with the convergence (?) to establish
that φε does not ‘excessively contract’ mass, up to some error
that is o(1) in ε.

I Roughly speaking, define νε := (∇φε)#µ, use previous point
to show that ν ≥ νε + o(1) as ε→ 0.

I But ν(Λ) = νε(Λ), so νε → ν.

I Conclude by stability of optimal transport.



Section 5

Experiments







Section 6

Modified discretization



Recall we want to solve

minimize
ψ

∫
Ω

max
{

0,−det 1/n (∇2ψ(x)
)

+ f1/n(x)g−1/n (∇ψ(x))
}

subject to ψ convex

∇ψ(Ω) ⊂ Λ
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h L∞ error L2 error Time (s)

2−3 0.0648 0.0249 1.53
2−4 0.0045 0.0020 1.38
2−5 0.0021 0.0010 2.15
2−6 0.0007 0.0003 8.20
2−7 0.0005 0.0002 38.58
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h L∞ error L2 error Time (s)

2−3 0.0375 0.0179 1.27
2−4 0.0119 0.0049 1.51
2−5 0.0034 0.0012 1.90
2−6 0.0013 0.0007 9.51
2−7 – – 42.31



Section 7

Removing target condition



I Recall that we want to solve

det
(
∇2ϕ(x)

)
=

f(x)

g (∇ϕ(x))
, x ∈ Ω,

∇ϕ(Ω) = Λ.

(6)

I Let V = vol(Λ), f (0) = f , and let ϕ(0) be the solution of

det
(
∇2ϕ(x)

)
= V f (0)(x), x ∈ Ω,

∇ϕ(Ω) = Λ.

I Define ϕ(i+1) to be the solution of

det
(
∇2ϕ(x)

)
= V f (i+1)(x) x ∈ Ω,

∇ϕ(Ω) = Λ,

where f (i+1) := f̃ (i+1)
/(∫

Ω
f̃ (i+1) dx

)
for f̃ (i+1) := f/(g ◦ ∇ϕ(i)).



0.5

1

0.5

1

0

1

0.5
-0.5

0

1.5

-0.5

-1
-1

2

2

1

2.5

0.5

3

0

1
-0.5

3.5

0.5

0

-0.5
-1

4

-1





h L∞ error L2 error Iterations Time (s)

2−3 0.0814 0.0317 3 3.36
2−4 0.0175 0.0095 4 5.59
2−5 0.0056 0.0031 4 8.97
2−6 0.0017 0.0008 5 45.16
2−7 – – 5 207.02



Source density: f = 1.5− 1B(0,0.5).
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h L∞ error L2 error Iterations Time (s)

2−3 0.0312 0.0192 6 7.42
2−4 0.0156 0.0069 7 10.53
2−5 0.0091 0.0041 7 14.11
2−6 0.0045 0.0025 9 78.90
2−7 – – 10 381.73
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