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Section 1

Review of optimal transport and numerical
methods



Monge problem

» Monge optimal transport problem:
minimize / c(x, T(x)) du(x)
X
subject to T measurable, Tyu = v.

» Kantorovich is a relaxation (always feasible)

» Exist unique coinciding solutions to each problem when
c(z,y)=|r—y|?>, p=fdx,y =gdyon X =Y =R"



Brenier's theorem

» X =Y =R". Roughly speaking, under mild technical
conditions on u, v, Monge-Kantorovich problem is uniquely
solved by transport map T' = V¢, where ¢ is convex

» Conversely, gradients of convex functions are optimal maps
from i to Ty p



Review of numerical methods

> LP, assignment problems

» semi-discrete (Lévy 2015)

» entropic regularization (Cuturi 2013)

» sparse LP (Oberman-Ruan 2015, Schmitzer 2016)

» PDE methods (Benamou-Brenier 2000,
Benamou-Froese-Oberman 2014)



Section 2

Recasting the Monge-Ampére equation for OT
as a (convex) optimization problem



The Monge-Ampeére equation

» ), A open and bounded in R™, consider optimal transport
problem from source measure p on €2 with density f to target
measure v on A with density g

» Caffarelli's regularity theory for A convex

» Equivalently, find convex 1 solving second boundary value
problem for the Monge—Ampeére equation



A cute observation

» Suppose 1 convex is a ‘subsolution’ of the MAE, i.e.,

2 f(z) T
det (V w(ac)) > 7(V¢($))7 €O,

g
Vi(Q) C A.

» Then 7 is a solution!



A cute transformation

» Equivalently, find convex 1 such that

—det V" (V2(2)) + fH"(x)g " (Vep(z)) <0, x€Q,
V() C A.
3)
» Notice that LHS of inequality is ‘convex’ in ¥ if g~/ is
convex. This holds in particular if ¢ is log-concave (which
holds in particular if g is uniform on convex A)



A Monge-Ampére optimization problem

» So the convex potential is the solution of:

mianize /Qmax {O, — det /" (V2 (z)) + @y (Vz/)(:r))}
subject to 1) convex

V() C A

» If g~/ is convex, then this can be thought of as a convex
optimization problem



Section 3

Discretization



Discretization

> Many ways to discretize

» First we triangulate the domain into simplices {S;}£, with
vertex set {x]}évzl where S; = Conv{z;,,...,xi,}

> Example:

Yavavav,

P YAYavavavavav
YavaVAYAVAVAY,
SRR




A discrete Monge-Ampére optimization problem

The discrete Monge-Ampére optimization problem (DMAOP)

associated to the data (2, A, f, g, {xj}é\]:l, {Si}M ) is a natural

discretization of the continuous MAOP. Optimization variables are:

» 1); variable for Brenier potential value at point x;
» 7; variable for subdifferential of Brenier potential at z;
» convexity enforced via ¥; > o+ (i, — ), 4,5 =1,...,N

> convexity constraint inefficient, can be made more efficient in
practice later



Section 4

Convergence result



What do we want to converge?

» We need to extract something to converge

» Define

aj(z) :==; + (nj,x — xj), j=1,...,N, (4)
so a; is the (unique) affine function with a;(z;) = v; and
Vaj(z;) = nj.

» Define the optimization potential by

¢(x) ==0b+ [max a;(x), (5)

where b € R is chosen such that ¢(0) = 0.



Convergence result

Theorem (L.-Rubinstein, arXiv:1603.07435)

Let f € C%%(Q), g € C"Y(A) and suppose A is convex. Let
{{Si(k)}?i(lk)}keN be a ‘'nice’ sequence of triangulations. Let ¢ be
the the unique Brenier solution of our Monge—-Ampére equation

with ©(0) = 0, and let ¢¥) be the optimization potentials obtained
from the DMAOP. Then

qﬁ(k) — ¢ uniformly on Q,

and 8¢%) — V¢ pointwise on Q. In particular, V¢¥) converges
pointwise almost everywhere to the optimal transport map pushing
forward u = fdx tov = gdz.



Main ideas of proof

» Show that optimal costs ¢ — 0.
» Assume ¢¥) — ¢ uniformly for some ¢. WTS ¢ = ¢.
» Mollify the sequence to get ¢£’“) — ¢ (*).

» Use ¢, — 0 together with the convergence (%) to establish
that ¢. does not ‘excessively contract’ mass, up to some error
that is o(1) in .

» Roughly speaking, define v, := (V. )#wu, use previous point
to show that v > 1. + o(1) as € — 0.

» But v(A) = v.(A), so v — 1.
» Conclude by stability of optimal transport.



Section 5

Experiments
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Section 6

Modified discretization



Recall we want to solve

minibmize /Qmax {O7 —det /" (V2(z)) + I a@yg (Vz/)(w))}
subject to 1) convex

V() C A






h  L*® error L?error Time (s)
273 0.0648  0.0249 1.53
24 0.0045  0.0020 1.38
27 0.0021  0.0010 2.15
2-6  0.0007  0.0003 8.20
2-7 0.0005  0.0002 38.58
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h  L*® error L?error Time (s)
273 0.0375  0.0179 1.27
2=4  0.0119  0.0049 1.51
275 0.0034  0.0012 1.90
2-6  0.0013  0.0007 9.51
27 - - 42.31




Section 7

Removing target condition



» Recall that we want to solve

» Let V =vol(A), £ = f, and let »® be the solution of

det (VQgp(x)) =vi9%), zeq,
Vp(Q2) = A.

» Define (‘Y to be the solution of

det (VQQO(QJ)) = Vf(iﬂ)(a:) T e,
V() = A,

where 0+ .= f““)/(fg fen d:c) for fO+D .= £/(goVe®).

(6)
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L°° error

L? error

Iterations

Time (s)

0.0814
0.0175
0.0056
0.0017

0.0317
0.0095
0.0031
0.0008

3
4
4
5
5

3.36
5.59
8.97
45.16
207.02
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L°° error

L? error

Iterations  Time (s)

0.0312
0.0156
0.0091
0.0045

0.0192
0.0069
0.0041
0.0025

6 7.42

7 10.53
7 1411
9 78.90
10 381.73




	Review of optimal transport and numerical methods
	Recasting the Monge-Ampére equation for OT as a (convex) optimization problem
	Discretization
	Convergence result
	Experiments
	Modified discretization
	Removing target condition

