Toward sharp error analysis of extended Langrangian molecular dynamics for polarizable force field simulation

Michael Lindsey, Courant Institute (Joint work with Dong An, Lin Lin)

Ki-Net Young Researchers Workshop UMD, October 2019

Background

- ▶ In molecular dynamics (MD), interested in evolution of state vector $r = (r^{(1)}, ..., r^{(N)}) \in \mathbb{R}^d$ of atomic positions $r^{(i)} \in \mathbb{R}^3$ (so d = 3N).
- Often a *latent variable* $x = \Phi(r) \in \mathbb{R}^{d'}$ needs to be computed as auxiliary step to perform the evolution, i.e., dynamics given by

$$\ddot{r}(t)=G(r(t),x(t)), \ \ \text{where} \ \ x(t)=\Phi(r(t)).$$

- ▶ Φ can be complicated, e.g., in *ab initio* MD simulations, one must solve a quantum many-body problem at each time step to compute the forces!
 - In practice, within DFT approximation, must solve nonlinear eigenvalue problem at each time step.
- ► Spoiler: we will study case x(t) = A(r)⁻¹ b(r), to be motivated later. Must solve linear system at each time step.
- Maintain general perspective for the time being.

Background

• More structure: dynamics of (r, x) are Hamiltonian with respect to

$$H(r, x, p, \phi) = \frac{1}{2}|p|^2 + U(r) + Q(r, x),$$

where ϕ is the momentum variable for x, viewed as having zero mass. (Mass of all particles taken to be 1 for simplicity.)

 \blacktriangleright What I really mean is that the auxiliary variable x has $\varepsilon \to 0$ mass, so consider

$$H_{\varepsilon}(r, x, p, \phi) = \frac{1}{2}|p|^2 + \frac{\varepsilon}{2}|\phi|^2 + U(r) + Q(r, x).$$

This yields dynamics:

$$\begin{split} \ddot{r}_{\varepsilon}(t) &= -\frac{\partial U}{\partial r}(r_{\varepsilon}(t)) - \frac{\partial Q}{\partial r}(r_{\varepsilon}(t), x_{\varepsilon}(t)) \\ \varepsilon \ddot{x}_{\varepsilon}(t) &= -\frac{\partial Q}{\partial x}(r_{\varepsilon}(t), x_{\varepsilon}(t)). \end{split}$$

Background

Take limit:

$$\begin{split} \ddot{r}(t) &= -\frac{\partial U}{\partial r}(r(t)) - \frac{\partial Q}{\partial r}(r(t), x(t)) \\ 0 &= -\frac{\partial Q}{\partial x}(r(t), x(t)). \end{split}$$

• Map $x = \Phi(r)$ implicitly defined by solving $\frac{\partial Q}{\partial x}(r, x) = 0$ for given r.

- Don't think of this as a 'derivation' of our model...will define specific model shortly.
- But it is a way to understand the structure, and the practical method that we consider we will *reverse* these steps.

Model

- Classical molecular dynamics with polarizable force field.
- Potential energy landscape U(r) includes:
 - 'nonbonded terms' (e.g., permanent electrostatic and van der Waals interactions).
 - 'bonded valence terms' (bond-stretching, angle-bending, etc.).
- ▶ $x = (x^{(1)}, \dots, x^{(N)}) \in \mathbb{R}^d$ is the vector of induced dipoles associated to each atom (so d = d' = 3N).
- Contribution of induced dipole given by

$$Q(r,x) = \frac{1}{2}x^{\top}A(r)x - b(r)^{\top}x,$$

where

- ▶ b⁽ⁱ⁾(r) indicates the electric field felt by the *i*-th atom due to the permanent electrostatics of the system in configuration r.
- $A(r) \succeq 0$ specifies the interaction of the induced dipoles with themselves and each other.
 - $A^{(i,j)}(r) = \delta_{ij} [\alpha^{(i)}]^{-1} I_3 + T^{(i,j)}(r)$, where $\alpha^{(i)}$ is the atomic polarizability of the *i*-th atom, $T^{(i,j)} \in \mathbb{R}^{3 \times 3}$ is the induced dipole interaction matrix.

Model summary

 Plugging in Q to our earlier formulas, the ('massless') dynamics are given by differential-algebraic system

$$\ddot{r}(t) = G(r(t), x(t)))$$

$$0 = b(r(t)) - A(r(t))x(t),$$

where

$$G(r,x) = -\frac{\partial U}{\partial r}(r) - \frac{1}{2}x^{\top}\frac{\partial A}{\partial r}(r)x - \frac{\partial b^{\top}}{\partial r}(r)x.$$

- ► Computational bottleneck: apparently have to invert *A*(*r*) at each time-step in numerical integration.
- ▶ Aside: our main analysis will work for quite general G (and even $d' \neq d$), but...
 - ► We do use Hamiltonian structure to guarantee some useful global-in-time *a priori* bounds.
 - For numerical discretization, Hamiltonian structure exploited by symplectic integrators for long-time stability.

Extended Lagrangian scheme

► Extended Lagrangian approach solves the ε > 0 ('massive') dynamics from before:

$$\begin{split} \ddot{r}_{\varepsilon}(t) &= G(r_{\varepsilon}(t), x_{\varepsilon}(t)))\\ \varepsilon \ddot{x}_{\varepsilon}(t) &= b(r_{\varepsilon}(t)) - A(r_{\varepsilon}(t)) x_{\varepsilon}(t). \end{split}$$

- In this setting, called the 'inertial extended Lagrangian SCF-free' or 'iEL/0-SCF' method [Albaugh, Niklasson, Head-Gordon 2017].
 - ► SCF = self-consistent field iteration.
 - 0-SCF means here that you don't have solve linear systems at each step.
- Can consider extended Lagrangian molecular dynamics (XLMD) for more general Q (e.g., XL Born-Oppenheimer MD (XL-BOMD) for ab initio simulations [Niklasson et al 2006; Niklasson 2008; Niklasson, Cawkwell 2012]).
- Auxiliary dynamics oscillatory on time scale $\sim \sqrt{\varepsilon}$, hence must take time steps at least this small.
- With careful choice of ε, iEL/0-SCF (and related methods) can outperform discretizations of the original dynamics in terms of efficiency and long-time stability while still maintaining the accuracy for the atomic trajectories.

Assumptions

- We consider a fixed time interval [0,T] (independent of ε).
- Let (r_⋆, p_⋆), where p_⋆ := r_⋆, be the solution of the massless equations, given fixed initial conditions r_⋆(0), p_⋆(0).
- ▶ Let $(r_{\varepsilon}, p_{\varepsilon}, x_{\varepsilon}, \dot{x}_{\varepsilon})$ be the solution of the ε -massive equation, given initial conditions $r_{\varepsilon}(0) = r_{\star}(0)$, $p_{\varepsilon}(0) = p_{\star}(0)$, as well as $x_{\varepsilon}(0), \dot{x}_{\varepsilon}(0)$ arbitrary (for now) other than being bounded independent of ε .
- Technical assumptions:
 - 1. $A : \mathbb{R}^d \to S^d_{++}$ is a C^3 map, and there exists C > 0 such that $A(r) \succeq C^{-1}$ for all $r \in \mathbb{R}^d$.
 - 2. $b : \mathbb{R}^d \to \mathbb{R}^d$ is a bounded C^3 map.
 - 3. U is bounded below, and $F := -\frac{\partial U}{\partial r} : \mathbb{R}^d \to \mathbb{R}^d$ is a locally Lipschitz C^0 map.

Proposition (a priori bounds)

Under assumptions (1), (2), (3), there exists C such that both $|x_{\varepsilon}| \leq C$ and $\left|\frac{d^{k}r_{\star}}{dt^{k}}\right|, \left|\frac{d^{k}r_{\varepsilon}}{dt^{k}}\right| \leq C$ for k = 0, 1, 2 and on the entire time interval [0, T].

Goals and results

- ▶ Want to study the convergence of $(r_{\varepsilon}, p_{\varepsilon})$ to (r_{\star}, p_{\star}) as $\varepsilon \to 0$, as well as the convergence $x_{\varepsilon} \to x_{\star}$, where $x_{\star}(t) := A(r_{\star}(t))^{-1}b(r_{\star}(t))$.
- What about the initial condition for $x_{\varepsilon}, \dot{x}_{\varepsilon}$ again? Three cases:
 - Compatible: choose $x_{\varepsilon}(0) = x_{\star}(0) = A(r_{\star}(0))^{-1}b(r_{\star}(0))$, but can take $\dot{x}_{\varepsilon}(0)$ arbitrary.
 - ► Optimally compatible: compatible but also take x
 _ε(0) = x
 _⋆(0) (can get explicit formula).
 - ► Incompatible: otherwise.
- Mostly care about accuracy of r_{ε} . Numerical experiments say:
 - Compatible: $r_{\varepsilon} r_{\star} = O(\varepsilon)$, $x_{\varepsilon} x_{\star} = O(\sqrt{\varepsilon})$.
 - Optimally compatible: r_ε − r_⋆ = O(ε), x_ε − x_⋆ = O(ε).
 - Incompatible: no convergence of anything.

Theorem

For compatible initial condition, it holds that $r_{\varepsilon} - r_{\star}, x_{\varepsilon} - x_{\star} = O(\sqrt{\varepsilon})$. In dimension d = 1, all the sharp rates mentioned above hold.

Remark

Sharp analysis in d = 1 should extend, but it's at least a bit more difficult. (It is only the dimension of the auxiliary variable x_{a} that matters.)

Numerical example

$$U(r) = r_1^2 + r_2^2 = |r|^2, \quad A(r) = \begin{pmatrix} 2 + |r|^2 & |r|^2 \\ |r|^2 & 1 + |r|^2 \end{pmatrix}$$
$$b(r) = (\sin(r_1 + r_2), \cos(r_1 - 2r_2))^\top$$

Figure: Example (d = 2) of DAE (massless) and SPE (massive, $\varepsilon = 0.001$) dynamics with compatible initial condition.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Related work

- ▶ To our knowledge, there are no convergence results for such extended Lagrangian schemes, except in setting (linear-response regime) where dynamics are linear in both *r* and *x* and the system can be directly diagonalized [L. Lin, J. Lu, S. Shao 2014].
- An interesting related work [D. An, T. Head-Gordon, L. Lin, J. Lu 2019] studies the related stochastic dynamics:

$$\begin{split} \ddot{r}_{\varepsilon}(t) &= G(r_{\varepsilon}(t), x_{\varepsilon}(t)))\\ \varepsilon \ddot{x}(t) &= b(r_{\varepsilon}(t)) - A(r_{\varepsilon}(t)) x_{\varepsilon}(t) - \sqrt{\varepsilon} \gamma \, \dot{x}_{\varepsilon} + \sqrt{2\gamma/\beta} \, \varepsilon^{1/4} \, \dot{W}(t), \end{split}$$

where β is an inverse temperature, γ is a damping parameter, and W is a Brownian motion.

- Choosing $\beta^{-1} = O(\varepsilon^{1/2})$ yields $O(\sqrt{\varepsilon})$ error for both $r_{\varepsilon}, x_{\varepsilon}$.
- These results are sharp in this setting, but the setting itself (even without noise) loses the O(ε) error.

Residual dynamics

Recall the dynamics

$$\begin{aligned} \ddot{r}_{\varepsilon}(t) &= G(r_{\varepsilon}(t), x_{\varepsilon}(t)))\\ \varepsilon \ddot{x}_{\varepsilon}(t) &= b(r_{\varepsilon}(t)) - A(r_{\varepsilon}(t)) x_{\varepsilon}(t). \end{aligned}$$

- Think of path r_{ε} as being fixed, then study the behavior of x_{ε} .
 - Governed by linear inhomogeneous ODE with time-dependent coefficients.
- Want to think of x_ε as perturbation of A(r_ε(t))⁻¹b(r_ε(t)), so consider instead dynamics for the residual y_ε := x_ε − A(r_ε(t))⁻¹b(r_ε(t)):

$$\varepsilon \ddot{y}_{\varepsilon} = -A(r_{\varepsilon}(t))^{-1}y_{\varepsilon}(t) + \varepsilon \psi_{\varepsilon}(t),$$

where

$$\psi_{\varepsilon} := -\frac{d^2}{dt^2} \left[A(r_{\varepsilon})^{-1} b(r_{\varepsilon}) \right].$$

A priori bounds guarantee that |ψ_ε| ≤ C uniformly in ε, t.
 Initial conditions for y_ε and y_ε are given by

$$y_{\varepsilon}(0) = 0, \ \dot{y}_{\varepsilon}(0) = z_0 := \dot{x}_{\varepsilon}(0) - \dot{x}_{\star}(0).$$

Warm-up

As a warm-up, consider the constant-coefficient, homogeneous version of the residual dynamics:

$$\begin{cases} \varepsilon \ddot{y}_{\varepsilon}(t) = -Ay_{\varepsilon}(t) \\ y_{\varepsilon}(0) = 0, \ \dot{y}_{\varepsilon}(0) = z_0 \end{cases}$$

where A is constant.

Then we have the explicit solution

$$y_{\varepsilon}(t) = \sqrt{\varepsilon} \sin\left(\sqrt{A} \frac{t}{\sqrt{\varepsilon}}\right) A^{-1/2} z_0.$$

▶ $|y_{\varepsilon}| \leq C\sqrt{\varepsilon}$ for arbitrary z_0 , and moreover \dot{y}_{ε} is O(1) but oscillatory on time scale $\sim \sqrt{\varepsilon}$.

 If z₀ = 0, then in fact we have y_ε ≡ 0, which is of course much stronger than real case (will get |y_ε| ≤ Cε).

Homogeneous system

First study homogeneous equation

$$\begin{split} & \varepsilon \ddot{\widetilde{y}}_{\varepsilon} = -A(r_{\varepsilon})\widetilde{y}_{\varepsilon}, \\ & \widetilde{y}_{\varepsilon}(s) = 0, \ \dot{\widetilde{y}}_{\varepsilon}(s) = \xi_0, \end{split} \tag{1a}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where the starting time s < T and initial value ξ_0 is arbitrary.

 For future reference, we define the flow map for the homogeneous system (1) by

$$\Phi_{\varepsilon}^{s,t}(0,\xi_0) = \left(\begin{array}{c} \widetilde{y}_{\varepsilon}(t) \\ \dot{\widetilde{y}}_{\varepsilon}(t) \end{array}\right)$$

for $t \geq s$, where $\widetilde{y}_{\varepsilon}$ is the solution of (1).

Homogeneous system

$$K_{\varepsilon}(t) = A(r_{\varepsilon}(t))^{1/2}.$$

Let

$$U_{\varepsilon,+}^{s}(t) = \mathcal{T}e^{i\varepsilon^{-1/2}\int_{s}^{t}K_{\varepsilon}(t')\,dt'},$$

where $\mathcal{T}e^{[\,\cdot\,]}$ denotes is 'the time-ordered exponential.'

 \blacktriangleright This just means that $U^s_{\varepsilon,+}(t)$ is defined to be the solution of

$$\dot{U}^s_{\varepsilon,+}(t) = \imath \varepsilon^{-1/2} K_{\varepsilon}(t) U^s_{\varepsilon,+}(t), \quad U^s_{\varepsilon,+}(s) = I_d.$$

Likewise, let

$$U^{s}_{\varepsilon,-}(t) = \mathcal{T}e^{-\imath\varepsilon^{-1/2}\int_{s}^{t}K_{\varepsilon}(t')\,dt'}.$$

▶ By construction $U^s_{\varepsilon,+}$ and $U^s_{\varepsilon,-}$ are unitary matrices for all t.

Homogeneous system

Lemma

(i) $\Phi_{\varepsilon}^{s,t}(0,\xi_0)$ can be written in the form

$$\Phi_{\varepsilon}^{s,t}(0,\xi_0) = \begin{pmatrix} U_{\varepsilon,+}^s(t)c_{\varepsilon,+}^s(t) + U_{\varepsilon,-}^s(t)c_{\varepsilon,-}^s(t) \\ \imath \varepsilon^{-1/2} K_{\varepsilon}(t) \left[U_{\varepsilon,+}^s(t)c_{\varepsilon,+}^s(t) - U_{\varepsilon,-}^s(t)c_{\varepsilon,-}^s(t) \right] \end{pmatrix}.$$

(ii) $c^s_{\varepsilon,+}(t)$ and $c^s_{\varepsilon,-}(t)$ allow the estimate

$$|c_{\varepsilon,+}^s(t)|, |c_{\varepsilon,-}^s(t)| \le C\varepsilon^{1/2} |\xi_0|,$$

where C is independent of ε and ξ_0 . (iii) Φ allows the estimate

$$\Phi_{\varepsilon}^{s,t}(0,\xi_0) = \begin{pmatrix} \mathcal{O}(\varepsilon^{1/2}|\xi_0|) \\ \mathcal{O}(|\xi_0|) \end{pmatrix}.$$

Inhomogeneous system

Now we return to the residual system

$$\ddot{y}_{\varepsilon} = -A(r_{\varepsilon}(t))^{-1}y_{\varepsilon}(t) + \varepsilon\psi_{\varepsilon}(t), \quad y_{\varepsilon}(0) = 0, \ \dot{y}_{\varepsilon}(0) = z_0.$$

• Introduce the variable $z_{\varepsilon} := \dot{y}_{\varepsilon}$ to obtain:

$$\left(\begin{array}{c} \dot{y}_{\varepsilon} \\ \dot{z}_{\varepsilon} \end{array}\right) = \left(\begin{array}{c} z_{\varepsilon} \\ -\varepsilon^{-1}Ay_{\varepsilon} \end{array}\right) + \left(\begin{array}{c} 0 \\ \psi_{\varepsilon}(t) \end{array}\right).$$

Then by Duhamel's principle,

$$\begin{pmatrix} y_{\varepsilon}(t) \\ z_{\varepsilon}(t) \end{pmatrix} = \Phi_{\varepsilon}^{0,t}(0,z_0) + \int_0^t \Phi_{\varepsilon}^{s,t}(0,\psi_{\varepsilon}(s)) \ ds.$$

Recall from our Lemma:

$$\Phi_{\varepsilon}^{s,t}(0,\xi_0) = \begin{pmatrix} \mathcal{O}(\varepsilon^{1/2}|\xi_0|) \\ \mathcal{O}(|\xi_0|) \end{pmatrix}$$

▶ Then it directly follows that $|y_{\varepsilon}| \leq C \varepsilon^{1/2}$, $|\dot{y}_{\varepsilon}| \leq C$.

Completing the proof of the coarse estimate

Recall dynamics:

$$\dot{r}_{\varepsilon} = p_{\varepsilon}, \quad \dot{p}_{\varepsilon} = G(r_{\varepsilon}, x_{\varepsilon}).$$

We just proved y_ε = x_ε − A(r_ε)⁻¹b(r_ε) = O(ε^{1/2}), so by assumptions / a priori bounds

$$\dot{r}_{\varepsilon} = p_{\varepsilon}, \quad \dot{p}_{\varepsilon} = G(r_{\varepsilon}, A(r_{\varepsilon})^{-1}b(r_{\varepsilon})) + e_{\varepsilon},$$

where $e_{\varepsilon} = \mathcal{O}(\varepsilon^{1/2}).$

Hence (r_ε, p_ε) almost satisfy an O(ε^{1/2})-perturbation of the equations defining (r_⋆, p_⋆).

- This is enough to imply that $r_{\varepsilon} = r_{\star} + \mathcal{O}(\varepsilon^{1/2})$, $p_{\varepsilon} = p_{\star} + \mathcal{O}(\varepsilon^{1/2})$.
 - Several ways to see this, e.g., go back to Picard iteration.

Sharp estimates in 1D

- We focus on the case d = 1.
- Actually we will have to bootstrap from our coarse estimate!
- Retain definitions from above.
- \blacktriangleright Since d=1, we denote $k_{\varepsilon}=K_{\varepsilon}$ to emphasize that this is a scalar quantity.
- Since d = 1, time-ordered exponential takes simple form

$$U_{\varepsilon,\pm}^s(t) = e^{\pm i(\kappa_\varepsilon(t) - \kappa_\varepsilon(s))/\sqrt{\varepsilon}}, \quad \kappa_\varepsilon(t) = \int_0^t k_\varepsilon(s) \, ds.$$

- By assumption k ≥ C⁻¹, so κ_ε is strictly increasing and inverse mapping κ_ε⁻¹ is well-defined.
- A priori bounds imply $|\dot{\kappa}|, |\ddot{\kappa}| \leq C$.

Sharp homogeneous oscillator asymptotics

Lemma

With the flow map $\Phi^{t,s}$ defined as before,

$$\Phi^{s,t}(0,\xi_0) = \begin{pmatrix} \varepsilon^{1/2} k_{\varepsilon}(t)^{-1/2} k_{\varepsilon}(s)^{-1/2} \sin\left(\frac{\kappa_{\varepsilon}(t) - \kappa_{\varepsilon}(s)}{\sqrt{\varepsilon}}\right) \xi_0 \\ k_{\varepsilon}(t)^{1/2} k_{\varepsilon}(s)^{-1/2} \cos\left(\frac{\kappa_{\varepsilon}(t) - \kappa_{\varepsilon}(s)}{\sqrt{\varepsilon}}\right) \xi_0 \end{pmatrix} + \begin{pmatrix} \mathcal{O}(\varepsilon) \\ \mathcal{O}(\varepsilon^{1/2}) \end{pmatrix}$$

- Compare: proof of asymptotics of Hermite polynomials from Tao's book on RMT.
- ▶ In earlier proof, obtained the system for c_{\pm} (omit ε from notation):

$$\dot{c}_{+} = -\frac{1}{2}U_{+}^{-1}K^{-1}\dot{K}U_{+}c_{+} + \frac{1}{2}U_{+}^{-1}K^{-1}\dot{K}U_{-}c_{-}$$
$$\dot{c}_{-} = \frac{1}{2}U_{-}^{-1}K^{-1}\dot{K}U_{+}c_{+} - \frac{1}{2}U_{-}^{-1}K^{-1}\dot{K}U_{-}c_{-}.$$

• Since d = 1, we can now commute operators to obtain

$$\dot{c}_{+} = -\frac{\dot{k}}{2k}c_{+} + \frac{\dot{k}}{2k}e^{-2\imath\kappa/\sqrt{\varepsilon}}c_{-}, \quad \dot{c}_{-} = -\frac{\dot{k}}{2k}c_{-} + \frac{\dot{k}}{2k}e^{2\imath\kappa/\sqrt{\varepsilon}}c_{+}.$$

Sharp inhomogeneous asymptotics

Lemma

Let y_{ε} be the solution to the residual system $\varepsilon \ddot{y}_{\varepsilon} = -Ay_{\varepsilon} + \psi_{\varepsilon}$, with $y_{\varepsilon}(0) = 0, \dot{y}_{\varepsilon}(0) = z_0$. Then for $t \in [0, T]$,

$$\begin{pmatrix} y_{\varepsilon}(t) \\ \dot{y}_{\varepsilon}(t) \end{pmatrix} = \begin{pmatrix} \varepsilon^{1/2} k(t)^{-1/2} k(0)^{-1/2} \sin\left(\frac{\kappa(t)}{\sqrt{\varepsilon}}\right) z_0 \\ k(t)^{1/2} k(0)^{-1/2} \cos\left(\frac{\kappa(t)}{\sqrt{\varepsilon}}\right) z_0 \end{pmatrix} + \begin{pmatrix} O(\varepsilon) \\ O(\varepsilon^{1/2}) \end{pmatrix}.$$

Reformulate inhomogeneous as the first-order system

$$\begin{pmatrix} \dot{y}_{\varepsilon}(t) \\ \dot{z}_{\varepsilon}(t) \end{pmatrix} = \begin{pmatrix} z_{\varepsilon}(t) \\ -\varepsilon^{-1}A(r_{\varepsilon}(t))y_{\varepsilon}(t) \end{pmatrix} + \begin{pmatrix} 0 \\ \psi_{\varepsilon}(t) \end{pmatrix}.$$

Duhamel's principle yields

$$\left(\begin{array}{c} y_{\varepsilon}(t) \\ z_{\varepsilon}(t) \end{array}\right) = \Phi_{\varepsilon}^{0,t}\left(0, z_{0}\right) + \int_{0}^{t} \Phi_{\varepsilon}^{s,t}\left(0, \psi_{\varepsilon}(s)\right) \, ds.$$

▶ Want to show integral term is $\mathcal{O}(\varepsilon)$ (oscillatory integral argument).

Completion of proof of sharp estimate

• Recall the ε -massive dynamics

$$\ddot{r}_{\varepsilon} = G(r_{\varepsilon}, x_{\varepsilon})$$

$$\varepsilon \ddot{x}_{\varepsilon} = b(r_{\varepsilon}) - A(r_{\varepsilon})x_{\varepsilon}$$

and the massless dynamics

$$\ddot{r}_{\star} = G\left(r_{\star}, A(r_{\star})^{-1}b(r_{\star})\right).$$

- Already know that $|x_{\varepsilon} A(r_{\varepsilon})^{-1}b(r_{\varepsilon})| \leq C\varepsilon^{1/2}$.
- ▶ Also know that $|r_{\varepsilon} r_{\star}| \leq C \varepsilon^{1/2}$ as well by bootstrapping from the coarse estimate.
- Combining previous two lines, get $|x_{\varepsilon} A(r_{\star})^{-1}b(r_{\star})| \leq C\varepsilon^{1/2}$.
- ▶ Hence can Taylor-expand the ODE and retain only linear terms, with $\mathcal{O}(\varepsilon)$ error
- ▶ Defining new variable $\theta_{\varepsilon} := r_{\varepsilon} r_{\star}$, which measures the error in the r variable, can obtain:

$$\ddot{\theta}_{\varepsilon} = \Upsilon \theta_{\varepsilon} + \Gamma y_{\varepsilon} + O(\varepsilon), \quad \theta_{\varepsilon}(0) = 0, \ \dot{\theta}_{\varepsilon}(0) = 0.$$

Completion of proof of sharp estimate

▶ We view the ODE for θ_{ε} as a forced modification of the homogeneous ODE $\ddot{\omega}$

$$\ddot{\widetilde{ heta}}_{\varepsilon} = \Upsilon \widetilde{ heta}_{\varepsilon}.$$

- Let $\Theta^s(t) \in \mathbb{R}^{2 \times 2}$ be the flow map for this homogeneous ODE.
- Then by Duhamel's principle and oscillatory integral argument (forcing is of magnitude ~ √ε and oscillation ~ √ε show forcing contributes only O(ε).
- ► In optimally compatible case, forcing is of magnitude O(ε) to begin with.

Conclusions and further directions

- ▶ We have proved first convergence results for iEL/0-SCF method.
- ► Can get sharp asymptotics in case d = 1. Qualitatively, the analysis seems to capture what is happening for d ≥ 1.
- Nonetheless, how to extend the analysis?
 - There should probably be an extra $\mathcal{O}(\varepsilon)$ non-oscillatory drift term appearing in the homogeneous oscillator dynamics, depending only on commutators that are equal to zero in d = 1.

- Can one extend to more general Q(r, x)? Schemes for *ab initio* MD?
- Any practical insights to be gained from the analysis?