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Background

» In molecular dynamics (MD), interested in evolution of state vector
r=(rM, ... 7)) € R? of atomic positions 7)) € R3 (so d = 3N).

» Often a latent variable x = ®(r) € R? needs to be computed as
auxiliary step to perform the evolution, i.e., dynamics given by

7(t) = G(r(t), z(t)), where z(t) = ®(r(t)).

» ® can be complicated, e.g., in ab initio MD simulations, one must
solve a quantum many-body problem at each time step to compute the
forces!

> In practice, within DFT approximation, must solve nonlinear eigenvalue
problem at each time step.

» Spoiler: we will study case z(t) = A(r)~1 b(r), to be motivated later.
Must solve linear system at each time step.

» Maintain general perspective for the time being.



Background

» More structure: dynamics of (r,x) are Hamiltonian with respect to

H(r,2,p.0) = 3ol + U(r) +Q(r, ).

where ¢ is the momentum variable for x, viewed as having zero mass.
(Mass of all particles taken to be 1 for simplicity.)

» What | really mean is that the auxiliary variable = has € — 0 mass, so
consider

1
He(r,2,p,6) = 1o + 6P + Ur) + Q(r.).

» This yields dynamics:

Folt) = ~ G (re(1)) G2 (re(0), (1)
cia(t) = 52 (re(t), (1)



Background

» Take limit:

» Map = = ®(r) implicitly defined by solving Q(r x) = 0 for given r.

» Don't think of this as a ‘derivation’ of our model...will define specific
model shortly.

» But it is a way to understand the structure, and the practical method
that we consider we will reverse these steps.



Model

Classical molecular dynamics with polarizable force field.
Potential energy landscape U(r) includes:
> ‘nonbonded terms' (e.g., permanent electrostatic and van der Waals
interactions).
» ‘bonded valence terms' (bond-stretching, angle-bending, etc.).
z= (M, ... 2(N)) e R? is the vector of induced dipoles associated
to each atom (so d = d' = 3N).

Contribution of induced dipole given by

vy

v

v

Q(r,x) = %xTA(r)x — b(T)Tx,

where
» b (r) indicates the electric field felt by the i-th atom due to the
permanent electrostatics of the system in configuration r.
» A(r) = 0 specifies the interaction of the induced dipoles with themselves
and each other.
» AW (r) = §;;[aD] 7z + TE) (1), where o' is the atomic
polarizability of the i-th atom, 7% e R3*3 is the induced dipole
interaction matrix.



Model summary

» Plugging in @ to our earlier formulas, the (‘massless’) dynamics are
given by differential-algebraic system

i(t) = G(r(t), z(t)))
0= b(r(t)) — A(r(t))z(t),

where
G(r,z) = _E(T) — 5 E(r):n — W(r)x

» Computational bottleneck: apparently have to invert A(r) at each
time-step in numerical integration.
» Aside: our main analysis will work for quite general G (and even
d #d), but...
» We do use Hamiltonian structure to guarantee some useful
global-in-time a priori bounds.
» For numerical discretization, Hamiltonian structure exploited by
symplectic integrators for long-time stability.



Extended Lagrangian scheme

» Extended Lagrangian approach solves the £ > 0 (‘massive’) dynamics

from before: )
Pe(t) = G(re(t), z(1)))
edic(t) = blre(t)) — Alre(t))z(t).
» In this setting, called the ‘inertial extended Lagrangian SCF-free’ or
iEL/0-SCF’ method [Albaugh, Niklasson, Head-Gordon 2017].

» SCF = self-consistent field iteration.
» 0-SCF means here that you don't have solve linear systems at each step.

» Can consider extended Lagrangian molecular dynamics (XLMD) for
more general @ (e.g., XL Born-Oppenheimer MD (XL-BOMD) for ab
initio simulations [Niklasson et al 2006; Niklasson 2008; Niklasson,
Cawkwell 2012]).

» Auxiliary dynamics oscillatory on time scale ~ /¢, hence must take
time steps at least this small.

» With careful choice of €, iEL/0-SCF (and related methods) can
outperform discretizations of the original dynamics in terms of
efficiency and long-time stability while still maintaining the accuracy
for the atomic trajectories.



Assumptions

» We consider a fixed time interval [0, 7] (independent of ¢).

> Let (r4,px), where p, := 7, be the solution of the massless equations,
given fixed initial conditions 7,(0), p.(0).

» Let (7, pe, xe, ) be the solution of the e-massive equation, given
initial conditions 7.(0) = r,(0), p:(0) = px(0), as well as z.(0), 2. (0)
arbitrary (for now) other than being bounded independent of .

» Technical assumptions:

1. A: R4 — th_ isa(C3 map, and there exists C' > 0 such that
A(r) = C~1 for all r € R,

2. b:R?* = R?is a bounded C® map.

3. U is bounded below, and F := —2% : RY — R? is a locally Lipschitz C°
map.

Proposition (a priori bounds)
Under assumptions (1), (2), (3), there exists C' such that both |x.| < C and

ddt’,;* ddtﬁf < C for k =0,1,2 and on the entire time interval [0, T].
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Goals and results

» Want to study the convergence of (r,p.) to (74, ps) as e — 0, as well
as the convergence z. — x, where x,(t) := A(r.(t)) ~1b(r«(t)).
» What about the initial condition for x., . again? Three cases:
» Compatible: choose z.(0) = z,(0) = A(r.(0))~1b(r.(0)), but can take
%.(0) arbitrary.
» Optimally compatible: compatible but also take i.(0) = 4, (0) (can get
explicit formula).
» Incompatible: otherwise.
» Mostly care about accuracy of .. Numerical experiments say:
» Compatible: 7. — 1, = O(¢), . — z, = O(\/e).
» Optimally compatible: r. —r, = O(¢), . — x, = O(e).
» Incompatible: no convergence of anything.

Theorem

For compatible initial condition, it holds that r. — ry,z. — x, = O(y/€). In
dimension d = 1, all the sharp rates mentioned above hold.

Remark

Sharp analysis in d = 1 should extend, but it's at least a bit more difficult.
(It is only the dimension of the auxiliary variable x_that matters.)



Numerical example

U(r)=ri+ri=1rf

A(r)

2+ |r)?
Ir|?

b(r) = (sin(ry 4 r2), cos(r1 — 2rz)
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Figure: Example (d = 2) of DAE (massless) and SPE (massive, ¢ = 0.001)
dynamics with compatible initial condition.



Related work

» To our knowledge, there are no convergence results for such extended
Lagrangian schemes, except in setting (linear-response regime) where
dynamics are linear in both r and = and the system can be directly
diagonalized [L. Lin, J. Lu, S. Shao 2014].

» An interesting related work [D. An, T. Head-Gordon, L. Lin, J. Lu
2019] studies the related stochastic dynamics:

Pe(t) = G(re(t), 22(1)))
e (t) = b(re(t)) — A(re(t))ze(t) — VEy de + /27/BeY W (1),

where [ is an inverse temperature, v is a damping parameter, and W
is a Brownian motion.

» Choosing S~ = O(e!/?) yields O(,/2) error for both r., ..

» These results are sharp in this setting, but the setting itself (even
without noise) loses the O(e) error.



Residual dynamics

» Recall the dynamics

ie(t) = G(re(t), z(1)))
eie(t) = b(re(t)) — A(re(t))ze(t).
» Think of path r. as being fixed, then study the behavior of z..

» Governed by linear inhomogeneous ODE with time-dependent
coefficients.

» Want to think of x. as perturbation of A(r.(t))~'b(r-(t)), so consider
instead dynamics for the residual . := x. — A(re(t)) ~1b(ro(t)):

eije = —A(re(t) e (t) + e (t),
where
2
e 1= —% [A(re)*lb(rg)] .

» A priori bounds guarantee that |¢.| < C uniformly in ¢, t.
» Initial conditions for y. and 7. are given by

Ye(0) = 0, 9(0) = 2o := #:(0) — 2,(0).



Warm-up

» As a warm-up, consider the constant-coefficient, homogeneous version
of the residual dynamics:

{5gs(t) = —Ay.(t)
Ye(0) =0, 9=(0) = 20,

where A is constant.

» Then we have the explicit solution
t
ye(t) = v/e sin <\/ A\/§> ATV2 4.

> |y:| < Cy/e for arbitrary zy, and moreover 3. is O(1) but oscillatory on
time scale ~ /e.

» If 29 =0, then in fact we have y. = 0, which is of course much
stronger than real case (will get |y.| < Ce).



Homogeneous system

» First study homogeneous equation
ey = —A(re)7e, (1a)
Ye(s) = 0, y.(s) = o, (1b)

where the starting time s < T and initial value & is arbitrary.

» For future reference, we define the flow map for the homogeneous

system (1) by N
e ()

for t > s, where y. is the solution of (1).



Homogeneous system

Define

v

K.(t) = A(ro(t))"/2.

> Let
U2, (1) = Te L

where Tel'] denotes is ‘the time-ordered exponential.’
This just means that U, (¢) is defined to be the solution of

v

US (t) = e VPK.(4)US (1), UL, (s) =1

v

Likewise, let .
Us (t) _ 7-671571/2 Ji Ke(t') dt/.

E,—

are unitary matrices for all ¢.

» By construction UZ | and U2



Homogeneous system

Lemma

(i) ®2'(0,&) can be written in the form

o US ()51 (1) + UE_ (e (1)
o <0’50>—<25—1/2K5<;3 U2 (1)t o ()~ UF(5)ez_ (1) >

(ii) ¢ 4 (t) and ¢& _(t) allow the estimate
24 ()], e (8)] < Ce'2&ol,

where C' is independent of € and &y.
(iii) @ allows the estimate

i o OEIg))
o (0’&’)‘( Ol )



Inhomogeneous system
» Now we return to the residual system
Je = _A(Te(t))ilya(t) + 51/}8(t)7 ya(o) =0, ya(o) = Z0-

Introduce the variable z. := . to obtain:

(%) - (= )+ (ol )

Then by Duhamel’s principle,

< 323 ) =22 (0,20) + /0 B3 (0,1 (s)) ds.

Recall from our Lemma:

i o ( OE )
o ““”‘( O(lé) )

Then it directly follows that |y.| < Ce/2 | |g| < C.

v

v

v

v



Completing the proof of the coarse estimate

» Recall dynamics:
Te =Dey De = G(re’;‘a xa)‘
> We just proved 3. = z. — A(r.) " 'b(r.) = O(¢'/?), so by assumptions
/ a priori bounds

Te =Pey De = G(T&‘a A(ra)ilb(ra)) + €,

where e. = O(¢!/?).
» Hence (7., p.) almost satisfy an O(c'/?)-perturbation of the equations
defining (74, p«)-
> This is enough to imply that 7. = 7, + O(e'/?), p. = p, + O(e'/?).
» Several ways to see this, e.g., go back to Picard iteration.



Sharp estimates in 1D

» We focus on the case d = 1.
» Actually we will have to bootstrap from our coarse estimate!
» Retain definitions from above.

» Since d = 1, we denote k. = K, to emphasize that this is a scalar
quantity.

» Since d = 1, time-ordered exponential takes simple form
t
5 () = R ORGDIVE () = / e (s) ds.
0

» By assumption k > C~1, so k. is strictly increasing and inverse
mapping x2 ! is well-defined.

v

A priori bounds imply |&|, |k] < C.



Sharp homogeneous oscillator asymptotics
Lemma
With the flow map ®%* defined as before,

81/2/€5(t)_1/2k€(s)_1/2 sin (Ha(t)\;;E(S)> & ( O(e) >
+
ka(t)l/le(S)il/Q COS (4/@5@)\;55(8)) 50 0(51/2)

£

*4(0,&) =

» Compare: proof of asymptotics of Hermite polynomials from Tao’s
book on RMT.

> In earlier proof, obtained the system for ¢4 (omit £ from notation):
1 . 1 .
by = 75U;1K_1KU+C+ + §U;1K—1KU,C,
1

. 1 .
il = 5U_—1K*1KU+C+ — §U__1K’1KU_C_.
» Since d = 1, we can now commute operators to obtain
L k k —2m/\f L k k 2m/f
Cy = — 2/<:C++ k c—, C_= ch + k



Sharp inhomogeneous asymptotics

Lemma
Let y. be the solution to the residual system eij. = — Ay, + 1, with
Ye(0) = 0,9-(0) = z9. Then fort € [0,T],

( Y- (1) ) _ 51/2]<;(t)—1/2k( 0)~ 1/2gin (@) < O(e) >
Y= (1) k(t)Y/2k(0) —1/2 ¢o8 (@ 20 o2 )-
» Reformulate inhomogeneous as the first-order system

( Bk ) - ( A O ) * ( e ) |

» Duhamel’s principle yields

( Ye (1) > — 0%t (0, 29) + /0 t 2" (0,94(s)) ds

ze(1)

» Want to show integral term is O(e) (oscillatory integral argument).



Completion of proof of sharp estimate
» Recall the e-massive dynamics
fe = G(rz, xe)
et = b(rs) — A(r:)ze
and the massless dynamics
e = G (re, A(m) 710(ry)) -

> Already know that |z. — A(r.)~'b(r.)| < Cel/2.

> Also know that |r. — 7| < Ce'/? as well by bootstrapping from the
coarse estimate.

» Combining previous two lines, get |z, — A(r,) " b(r,)| < Cel/2.

» Hence can Taylor-expand the ODE and retain only linear terms, with
O(e) error

» Defining new variable 6. := r. — 7., which measures the error in the r
variable, can obtain:

0. =0, +Ty. +O0(e), 0-(0)=0, 6.(0)=0.



Completion of proof of sharp estimate

» We view the ODE for 6. as a forced modification of the homogeneous
ODE

0. = Y0..
> Let ©°%(t) € R?*2 be the flow map for this homogeneous ODE.

» Then by Duhamel’s principle and oscillatory integral argument (forcing
is of magnitude ~ /¢ and oscillation ~ /& show forcing contributes
only O(e).

» In optimally compatible case, forcing is of magnitude O(e) to begin
with.



Conclusions and further directions

v

We have proved first convergence results for iEL/0-SCF method.

v

Can get sharp asymptotics in case d = 1. Qualitatively, the analysis
seems to capture what is happening for d > 1.

v

Nonetheless, how to extend the analysis?

» There should probably be an extra O(g) non-oscillatory drift term
appearing in the homogeneous oscillator dynamics, depending only on
commutators that are equal to zero in d = 1.

v

Can one extend to more general Q(r,x)? Schemes for ab initio MD?

v

Any practical insights to be gained from the analysis?



