

Joint work with Peter Lunts (UMD) and Michael Albergo (NYU)

Peter Lunts, Michael Albergo, and Michael Lindsey. **Non-Hertz-Millis scaling of the antiferromagnetic quantum critical metal via scalable Hybrid Monte Carlo**, *Nature Communications* 14 (2023).

Motivation from high-T_c superconductivity

- Often arises in vicinity of antiferromagnetically (AFM) ordered phase of a metal
- Ab initio computations for known high-temperature superconducting materials are extraordinarily difficult
- There is broad interest in minimal effective models

This picture emerges from experimental study of many quantum-critical real materials of interest in condensed matter

Fe-based superconductors

Motoyama et al., Nature (2007)

Hashimoto et al., Science (2012)

Cartoon phase diagram of a quantum critical metal

Spin-fermion model

- The O(3) spin-fermion model describes interactions between electrons in a metal and collective AFM spin excitations
 - Conjectured as model for high-T c superconductivity near AFM metallic phase transition
- Key object is the 'bosonic' spin field ϕ
 - $\phi(x,y,\tau) \in \mathbb{R}^3$, function of spatial lattice variables x, y and imaginary time variable τ
- Bosonic field couples to electrons
- Problem size parameters
 - L: lattice length
 - N: number of imaginary-time discretization points
- Total storage cost of ϕ is $O(L^2N)$

Two bands of fermions interacting with spin field, reproduced from [Bauer et al *Phys. Rev. Res.* (2020)]

Fermi surface for the underlying noninteracting fermion model. (Two bands, two spins.)

A computational challenge

 The key computational challenge is sampling bosonic fields according to the probability measure with density

$$P(\phi) \propto e^{-S_{
m B}(\phi)} \det{(M_\phi)}$$

- Here M_{ϕ} is a positive definite operator of size $\sim L^2 N$ admitting fast matrix-vector multiplications
 - Defines coupling of spin field to electrons
- Naive computational scaling of determinant is O(L⁶N³)
- Better scaling of O(L⁶N) is achieved by determinantal quantum Monte Carlo (DQMC)
 - Defines only existing competitive approach to spin-fermion model [Bauer et al Phys. Rev. Res. (2020)]

Inverse susceptibility of the spin field for two theory parameters. At bottom, **Hertz-Millis scaling** appears to fail, but correct scaling *cannot* be resolved!

[Bauer et al Phys. Rev. Res. (2020)]

A computational challenge

- Finite-size model can only resolve physical correlation functions at small momenta of order L⁻¹
 - Need larger lattice to reach experimentally accessible momenta
- DQMC can only reach L ≈ 14, not large enough to resolve novel physical scaling
- In particular, want to test theoretical predictions of non-Hertz-Millis scaling of the spin correlation function

$$\chi(\boldsymbol{\omega},\boldsymbol{q}) = \int_0^\beta \sum_{\boldsymbol{r}} \langle \boldsymbol{\phi}(\boldsymbol{\tau},\boldsymbol{r}) \cdot \boldsymbol{\phi}(0,\boldsymbol{0}) \rangle e^{i\boldsymbol{\omega}\boldsymbol{\tau} - i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{\tau}$$

- Predicted in [Schlief, Lunts, and Lee, *Phys. Rev. X* (2017)] but theory is perturbative in a model parameter
- Not reachable by DQMC

Inverse susceptibility of the spin field for two theory parameters. At bottom, **Hertz-Millis scaling** appears to fail, but correct scaling *cannot* be resolved!

[Bauer et al Phys. Rev. Res. (2020)]

A computational challenge

• In the paper we go up to 80 x 80 x 200. Some results:

Confirmed failure of Hertz-Millis scaling

Determination of novel scaling

$$\chi^{-1}(\omega = 0, \vec{q}) \sim |q_x|^{\alpha} + |q_y|^{\alpha}$$

Inverse susceptibility of the spin field for two theory parameters. At bottom, **Hertz-Millis scaling** appears to fail, but correct scaling *cannot* be resolved!

[Bauer et al Phys. Rev. Res. (2020)]

Pseudofermion trick

- Borrowing a trick from the lattice quantum chromodynamics (LQCD)
 community, exchange the difficulty of computing determinants (rigid) for
 difficulty of solving linear systems (more flexible)
 - Trick is now widely used, e.g., by the group of Scalettar in other condensed matter settings
- Specifically, view

$$P(\phi) \propto e^{-S_{
m B}(\phi)} \det{(M_\phi)}$$

as the marginal of

$$\widetilde{P}(\phi,arphi) \propto e^{-S_{
m B}(\phi)-arphi^* M_\phi^{-1} arphi}$$

 Sampling via Markov chain Monte Carlo (MCMC), specifically Hamiltonian Monte Carlo (HMC)

Discussion of the sampling problem

$$\widetilde{P}(\phi,arphi) \propto e^{-S_{
m B}(\phi)-arphi^* M_\phi^{-1}arphi}$$

- ullet Pseudofermion field arphi can be updated efficiently with a Gibbs sampler step
 - \circ Hence difficulty reduces to sampling from $\,\widetilde{P}(\,\cdot\,,arphi)\,$
- Bottleneck per step of Markov chain is **solving linear** systems $M_\phi \chi = \varphi$ needed to evaluate the effective bosonic action $-\log \widetilde{P}(\,\cdot\,,\varphi)$ and its gradient
- Several obstacles to optimal $O(L^2N)$ scaling:
 - Preconditioning linear solves
 - Diagonal Fourier preconditioner works pretty well but need multigrid for true linear scaling in large *N* limit
 - Computation of fermionic observables
 - Requires the computation of diagonal of an inverse via stochastic trace estimation, higher order observables challenging to achieve with optimal scaling

Correcting anisotropy

- But there is another hidden cost that threatens linear scaling: poor conditioning of the distribution itself!
 - Slows down the mixing time of Markov chain as the sampling problem becomes high-dimensional (i.e., L and N become large)

Why HMC?

- Among Metropolis-corrected schemes, best scaling of autocorrelation time ~ d^{1/4} w.r.t dimension d
- However, this scaling is derived for *isotropic* distributions
- Need to correct anisotropic distributions
- Implicit in the specification of <u>all</u> local MCMC samplers (RWMH, Langevin, HMC) is some metric which defines the distribution of the noise process
 - Correcting the metric means correcting anisotropy

Example of an anisotropic probability density

Correcting anisotropy

 Inspired by affine-invariant samplers [Goodman and Weare], want the following commutative diagram to hold

 Unfortunately, generic affine-invariant samplers either suffer from curse of dimensionality or have O(d³) scaling (due to estimating and operating with the covariance matrix)

Example of an anisotropic probability density

Correcting anisotropy

- However...the true covariance matrix ∑ of the bosonic field is translation-invariant, hence admits fast linear operations via FFT
- Unfortunately ∑ is unknown, and the non-interacting covariance is not good enough
- We must estimate it online with non-TI bosonic field samples $\phi^{(s)}$
- Empirical covariance (impractical to form)

$$rac{1}{S}\sum_s \phi^{(s)}\phi^{(s) op}$$

 We know that ground truth is diagonal in Fourier space, so we directly estimate the diagonal

$$\hat{\sigma} := rac{1}{S} \sum_s \widehat{\phi}^{(s)} \odot \widehat{\phi}^{(s)}$$

 Only O(1) samples to estimate the entire diagonal

Example of an anisotropic probability density

- ullet Form metric as $M=\Sigma^{-1}$
- ullet Fast matvecs and fast samples from $\mathcal{N}(0,M)$

Other auto-tuning techniques

- ullet Each HMC sample is produced by integrating Hamilton's equations for n_{leap} time steps of step size arepsilon
- How to tune these parameters?
- Adopt best practices from statistics community
- ullet Choose $oldsymbol{arepsilon}$ as large as possible subject to

$$(1 - \alpha(\varepsilon/2))^2 \le 2(1 - \alpha(\varepsilon))$$

where $\alpha(\varepsilon)$ is expected acceptance rate of one step

ullet Choose $n_{
m leap}$ to maximize

ESJD(
$$n$$
): = $\left\langle (\boldsymbol{\phi} - \boldsymbol{\phi}')^{\top} M(\boldsymbol{\phi} - \boldsymbol{\phi}') \alpha(\boldsymbol{\phi}, \boldsymbol{\phi}') \right\rangle_{\varepsilon, n_{\text{leap}} = n}$

[Pasarica and Gelman 2010]

IAT as a function of (a) N and (b) L

Scaling results (at critical point)

"Effective" autocorrelation time

Optimal HMC scaling of $b=\frac{1}{4}$ with respect to volume.

Nearly optimal with respect to temperature.

Wall clock scaling

Optimal with respect to volume

Suboptimal linear solver scaling with respect to temperature

Summary

- It's a good idea to tune your sampler!
 - Otherwise you are unlikely to get optimal scaling in high dimension.
- The tricks are quite portable.
- Some difficulties/questions:
 - How to construct efficient metric for gauge fields?
 - O How to generalize notion of metric to complex Langevin?