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Motivation from high-T _ superconductivity

e Often arises in vicinity of antiferromagnetically (AFM)
ordered phase of a metal

e Ab initio computations for known high-temperature
superconducting materials are extraordinarily difficult

e Thereis broad interest in minimal effective models

This picture emerges
from experimental study
of many quantum-critical
real materials of interest
in condensed matter
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Spin-fermion model

e The O(3) spin-fermion model
describes interactions between
electrons in a metal and collective
AFM spin excitations

o Conjectured as model for high-T
superconductivity near AFM metallic phase
transition

e Key object is the ‘bosonic’ spin field ¢

o ¢(xyr) € R function of spatial lattice
variables x, y and imaginary time variable ¢

e Bosonic field couples to electrons
e Problem size parameters

o L:lattice length

o  N: number of imaginary-time discretization
points

e Total storage cost of ¢ is O(L?N)
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Two bands of fermions interacting with spin
field, reproduced from [Bauer et al Phys. Rev.
Res. (2020)]
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Fermi surface for the underlying noninteracting

fermion model. (Two bands, two spins.)



A computational challenge
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e The key computational challenge is sampling ¥ =

e

bosonic fields according to the probability
measure with density

inverse susceptibility x
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e Here M is a positive definite operator of size P - ol S &
~ L2N admitting fast matrix-vector =il
multiplications i
o Defines coupling of spin field to electrons lfoz I
e Naive computational scaling of determinant is 00 : i é
O( L6 N3) mpmentirme?
e Better Scaling of O(LGN) iS achieved by Inverse susceptibility of the spin field fo_r Fwo
. theory parameters. At bottom, Hertz-Millis
determinantal quantum Monte Carlo (DQMC) scaling appears to fail, but correct scaling cannot

. . - be resolved!
o Defines only existing competitive approach to

spin-fermion model [Bauer et al Phys. Rev. Res. (2020)] [Bauer et al Phys. Rev. Res. (2020)]



A computational challenge
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e Finite-size model can only resolve physical
correlation functions at small momenta of order L™
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o Need larger lattice to reach experimentally accessible
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resolve novel physical scaling 10 — . .
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e In particular, want to test theoretical predictions of
non-Hertz-Millis scaling of the spin correlation

o
o

function

inverse susceptibility x

B .
X@.@= [ Y (@) $(0,0)¢ 7 dr

O Predicted in [Schlief, Lunts, and Lee, Phys. Rev. X
(2017)] but theory is perturbative in a model
parameter

o Not reachable by DQMC
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be resolved!

Missing data!

Inverse susceptibility of the spin field for two
theory parameters. At bottom, Hertz-Millis
scaling appears to fail, but correct scaling cannot

[Bauer et al Phys. Rev. Res. (2020)]




A computational challenge

In the paper we go up to 80 x 80 x 200. Some results:
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Inverse susceptibility of the spin field for two
theory parameters. At bottom, Hertz-Millis
scaling appears to fail, but correct scaling cannot
be resolved!

[Bauer et al Phys. Rev. Res. (2020)]



Pseudofermion trick

e Borrowing a trick from the lattice quantum chromodynamics (LQCD)
community, exchange the difficulty of computing determinants (rigid) for
difficulty of solving linear systems (more flexible)

o Trick is now widely used, e.g., by the group of Scalettar in other condensed matter settings

e Specifically, view
P(¢) oc e %8(9) det (M)

as the marginal of
~ * -1
P(¢,¢) x e oB(9)—¢ M

e Sampling via Markov chain Monte Carlo (MCMC), specifically Hamiltonian

Monte Carlo (HMC)



Discussion of the sampling problem
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e Pseudofermion field @ can be updated efficiently with

a Gibbs sampler step
o  Hence difficulty reduces to sampling from ﬁ( ‘Y 90)

e Bottleneck per step of Markov chain is solving linear
systems M, x = ¢ needed to evaluate the effective

bosonic action — log P( -, ¢) and its gradient

e Several obstacles to optimal O(L?N) scaling:
o  Preconditioning linear solves

m  Diagonal Fourier preconditioner works pretty well but
need multigrid for true linear scaling in large N limit

o  Computation of fermionic observables

m  Requires the computation of diagonal of an inverse via
stochastic trace estimation, higher order observables
challenging to achieve with optimal scaling
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Computing Fermi
surface requires
stochastic trace

estimation



Correcting anisotropy

But there is another hidden cost that ‘

threatens linear scaling: poor conditioning of o
the distribution itself!

o Slows down the mixing time of Markov chain as the
sampling problem becomes high-dimensional (i.e.,

L and N become large) & of

Why HMC?

o  Among Metropolis-corrected schemes, best scaling
of autocorrelation time ~ d”* w.r.t dimension d

o However, this scaling is derived for isotropic

distributions L
o Need to correct anisotropic distributions

Implicit in the specification of all local MCMC
samplers (RWMH, Langevin, HMC) is some
metric which defines the distribution of the
noise process

o Correcting the metric means correcting anisotropy
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Example of an anisotropic
probability density




Correcting anisotropy

e Inspired by affine-invariant samplers
[Goodman and Weare], want the following
commutative diagram to hold

problem

run algorithm

linearly
transform
problem

4

problem

run algorithm

-

samples

linearly
transform
samples

-

samples

e Unfortunately, generic affine-invariant samplers
either suffer from curse of dimensionality or have

O(d®) scaling (due to estimating and operating with

the covariance matrix)
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Example of an anisotropic
probability density




Correcting anisotropy

e However...the true covariance matrix Y of the ‘
bosonic field is translation-invariant, hence o8
admits fast linear operations via FFT OE /%
///O//
. 4 y
e Unfortunately X is unknown, and the a //////
non-interacting covariance is not good enough v ////
e We must estimate it online with non-T| bosonic //////
. -0.21 ///// //;/
field samples ¢(3) ////é/}/,;/
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e Empirical covariance (impractical to form) el &//;/
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e We know that ground truth is diagonal in Fourier

Example of an anisotropic

space, so we directly estimate the diagonal probability density
L 1 28 () | »
U.:Ezsqb ® ¢ e Formmetricas M = ¥}

e Fast matvecs and fast samples

from N (0, M)

e Only O(1) samples to estimate the entire
diagonal



Other auto-tuning techniques

e Each HMC sample is produced by integrating
Hamilton’s equations for 7]eap time steps of
step size €

e How to tune these parameters?

e Adopt best practices from statistics community

e Choose &£ as large as possible subject to

1 — a(e/2))* <21 — a(e))

where (&) is expected acceptance rate of
one step

e Choose NMjeap to maximize
ESID(): = (@~ ¢) M@~ ) ap.8))

[Pasarica and Gelman 2010]
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Scaling results (at critical point)

“Effective” autocorrelation time

Optimal HMC scaling of b="4 with
respect to volume.

Nearly optimal with respect to
temperature.

Wall clock scaling
Optimal with respect to volume

Suboptimal linear solver scaling
with respect to temperature
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Summary

e It's a good idea to tune your sampler!
O  Otherwise you are unlikely to get optimal scaling in high dimension.
e The tricks are quite portable.

e Some difficulties/questions:

o How to construct efficient metric for gauge fields?

o How to generalize notion of metric to complex Langevin?



