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Background

» Electronic structure theory concerns the N-particle Schrédinger
operator
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acting on the space H = AV (L%(R%; C)) of antisymmetric functions
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» One is often interested in determining the ground-state energy FEjy; in
particular, this allows one to compute molecular dynamics in the
Born-Oppenheimer approximation

> Electron density p : R? — R defined via
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Background

» Density functional theory [see Kohn and Sham (1965), Levy (1979),
Lieb (1983)]: there exists a universal (i.e., independent of Vi)
functional F'[p] such that

By = int { [ Ves(a)pta) o + 7]

> In general F'[p] is unknown. (Note A\ = 0 case is trivial)

» Meanwhile A — +oo limit is the regime of strictly correlated electrons
(SCE), cf. Seidl et al (1999)

» In this limit, exact functional can be expressed in terms of a
multi-marginal optimal transport (MMOT) problem with N marginals,

marginal state space R?, and pairwise cost function 3, Ve(x; — ;)



Background

» One hopes that SCE solution could be productively baked into
practical DFT functionals, but MMOT s hard

» See preprint for references; especially relevant motivation is Khoo and
Ying (2018)

» Real-space grid seems fundamental to discretization of SCE (?),
preventing one from making use of small but effective quantum
chemistry basis sets

» Hence we try to come up with a notion of SCE directly in second
quantization, after a choice of basis has already been made

» We can also consider model problems (e.g., Hubbard-like models) not
directly derived via a choice of basis for a first-quantized problem

» Will be similar but different: still MMOT, but now L marginals (where
L is number of sites or basis elements in model) each of state space

{0,1}



Outline

» Extend the formalism of ‘strictly correlated electrons’ to the setting of
second quantization
» Exact expression for density functional in the limit of infinitely strong
electronic repulsion
» Expression involves a multi-marginal optimal transport (MMOT)
problem with pairwise cost

» Introduce convex relaxation method for approximately solving general
MMOT problems with pairwise cost

v

Discuss dual structure and interpretation

v

Numerical experiments on model problems



Second quantization

>

State space is called the Fock space, denoted by F. The occupation
number (orthonormal) basis set for the Fock space is

{|817 sy 8L>}si6{0,1}7i:1,...,L

State [¢)) € F will be written as a linear combination of occupation
number basis elements as follows:

Wy=" > W(s1,...s0)|s1,. . 80), @(s1,...,81) €C

51,...,SL€{0,1}
Hence the state vector |¢) can be identified with a vector
e ®FC?~
The fermionic creation operators are defined (via this perspective) as
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and the annihilation operators a, are the Hermitian adjoints



Second quantization
» More important (and fundamental) than this definition are the CAR:

{ap, aZ} = Opqgs {ajo,aj]} ={ap,a,} =0

» Number operator defined as 7, := &;r,dp, total number operator defined
N = Zp ﬁp
The Hamiltonian operator is assumed to take the following form:

H= Z tpqa g + prnp + Z UpgTpTig

p,q=1 p,q=1

v
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Note the restriction of the form of the two-body interaction
» We do not consider the general form Ziqms:l quma;f,aga a, that
results from arbitrary quantum chemistry basis set
» Special choices of basis (e.g., Gausslets [White (2017)]) can achieve the
restricted form
» Also covers model problems such as Hubbard model with long-range
Coulomb interaction

v

Following DFT, one could think of £, v as fixed, w as problem-specific



Site occupation functional theory (SOFT) / lattice DFT

» Analog of Levy-Lieb in second quantization: SOFT / lattice DFT
[Schonhammer 1995]

» N-particle ground state energy given by

By = inf (W H |¥)
[yeF : (PlY)=1, (Y|N|p)=N

> Electron density p € R is defined as p, = (1|fi,|1)), which satisfies
Zp Pp = N



Site occupation functional theory (SOFT) / lattice DFT

Then we follow the Levy-Lieb constrained minimization approach [Levy
(1979),Lieb (1983)] and rewrite the ground state minimization problem as
follows:

Eo —pgbf {Z ppWp + < lpn|€p (] Z tpqa ag + Z UpgTipTig |¢>> }

= inf {(Wlpl + Fulpl}

where

Fiilp] = » )Hlpnli (Y] Z tpqa Gg + Z UpgTipiig |1) -

Here
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SCE

» As in first-quantized SCE, we can lower-bound as

Filp] = Wi)nf 7/)|thq&T?lq|1Z) )+ 1>nf ¢|vaqnpnq|1,b>

= Tp] +Esce[ I,

» Then we can lower-bound the ground-state energy in terms of the
‘Kohn-Sham SCE’ energy:

Ey > Exsscp := inf {Wip] + T[p] + Escelp]} --
pEIN
» Can derive self-consistency condition via stationarity (or, more

rigorously, convex duality): at optimal p, the effective single-particle
Hamiltonian

Z tpqa aq + Z wp + (Vsce[p])p] Tip

p,g=1

has ground state with density p, where vyce[p] := V,Escep]



SCE — MMOT

» Hence up to convergence of self-consistent loop, need only worry about
computing Fgc[p] and its gradient
» To this end, rewrite

Egcelp] = inf (4| Z UpqTipiig [)

[¥)—p
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where TI(p) is the space of joint probability mass functions on {0, 1}
with marginals satisfying

/’Lél) (S) = (1 - Pp)550 + ppasl, S = 0, 1.

(1)

» Considering the i, ’ alternately as vectors, we also write

(1) —

Hyp (1 — pp, Pp]T



SCE — MMOT
» Define the cost function C : {0,1}* — R by

C(s1y...,8L1) = vaqspsq.
P4

Then our SCE energy may be written

Esce = lnf Z C 817"‘7 ) (51)"'78L) = 6111_1[{ )<Cvu>7
H P

» This is precisely the form of a MMOT problem

» In other words, minimization of a linear functional of a joint probability
measure subject to constraints on all of the marginals of the measure
[see, e.g., Pass (2015)]

» Note that dimension of the feasible space for this problem is
exponential in L

» Gradient vsee[p] defined in terms of the Kantorovich potentials
(solutions to dual LP)



Pairwise cost and representability

» Efficient relaxation enabled by pairwise cost structure

C(s1y---, E UpgSpSq =: E Cpq(Sp, Sq)-

p#q p#q
» Accordingly, the objective function can be written as

3 2
FEscelp] = ueul'lliép) <CPQa :u;()q)>7
P#q

(2)

where the 2-marginals fi4 are defined implicitly in terms of 1

» We also identify ,uz(,q) and Cpy with 2 x 2 matrices, e.g.,

o [120,0) ué?w,l)]

oo = 12000 1201,1)

so
FEsce[p] = inf Tr[cpqﬂg%)]
rell(p)
P#q
» The 2-marginals must be jointly representable; exponentially hard to
enforce exactly



Relaxation of representability condition

» In the following we adopt the notation
_ L
s =(s1,...,s1) €{0,1}
» For such s, define eg € R2X2X X2 yjq
€s = €g; ®"'®68L7

where we adopt the (zero-indexing) convention eq = [1,0] ",
er1 =[0,1]7

» Any probability measure 1 on {0,1}” can be written as a convex
combination of the eg, i.e.,

M:Zases, where Zaszl, as > 0
S S



Relaxation of representability condition

> It follows that the 1- and 2-marginals can be written
1 T
( ) —Zasesp, upq Zasesp@)esq Zasespesq
S

» Now define

M({as}) = Zas : [6; ~--€;—L] )
» Then M is the matrix of 2 x 2 blocks M,,, given by
diag(py), p=1q,
Myq = (2)
Hpq 5 pP#q

> Then let C = (Cp,) € RCL*CL) be the matrix of the 2 x 2 blocks
Cpq defined above, which specifies the pairwise cost on each pair of
marginals



Relaxation of representability condition

» Then objective can in fact be rewritten as

S Tr[Cpgp)] = Tr[CM]
p#£q

» Hence the MMOT problem is equivalently

minimize Tr(CM)
]we]R(QL)x(ZL)7 {as}se{O,I}L
es,
subject to M = Zas : [e; . ..e;—L] )
s es;

M, = diag(,uz(,l)) forall p=1,...,L,
Zas =1, as>0 forall s€ {0,1}L.
S



Relaxation of representability condition

» At this point, we have not alleviated its exponential complexity;
indeed, note that {as}sc(o1}z is a vector of size 2l

> We relax by omitting {as}sco,1) entirely from the optimization,
retaining only M as an optimization variable and enforcing several
necessary constraints on M that are satisfied by the solution of the
exact problem

» First, note that M >0 and M > 0

» Second, the fact that the 1-marginals can be written in terms of the
2-marginals imposes additional local consistency constraints on M



Relaxation of representability condition

» Then we obtain the relaxation (the ‘primal 2-marginal SDP’):

minimize Tr(CM)
McR(2L)x(2L)

subject to M =0,
My, >0 forall p,g=1,....L (p <q),
Mpq].Q:/L}(Dl) forall pg=1,...,L (p <q),
MT].Q: (1) forall p,g=1,...,L (p <q),

My, = d1ag( (1)) forall p=1,...,L

» Note that the optimal value of the primal problem is in fact attained
because the constraints define a compact feasible set

» The fact that the marginal state space is {0, 1} is immaterial to the
derivation; i.e., works for arbitrary MMOT problem with pairwise cost



Duality

» Results will only be sketched

» Writing dual in the right way reveals interesting structure; can be
interpreted as solving an ordinary OT problem for each pair of
marginals; these OT problems are completely decoupled, modulo
coupling via a globally determined effective contribution to their cost
functions

» Suggests fast algorithms for future work, as well as hybridization with
existing methods for ordinary OT

» Careful understanding of dual also allows one to prove not only strong
duality, but also that dual optimizer is attained (nontrivial because
Slater’s condition fails)



Model problem
Here we consider a 1D spinless Hubbard-like model defined by the
Hamiltonian of Eq. (7), in which we take

P 0 otherwise

and consider two different cases of v, with next-nearest neighbor (NNN)
interaction,
U2 iflg—pl=1,
Upg = U/40 if [¢ —p[ =2,
0 otherwise
and next-next-nearest neighbor interaction (NNNN)
vz iflg—pl=1,
U/20 if |g—p|=2,
1= g200 i g — p| = 3,

0 otherwise



NNN interaction
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Figure: Spinless 1D fermionic lattice NNN model, L =14, N =9. (a) E/U as a
function of U. (b) Difference between the exact energy and the Kohn-Sham SCE
energies obtained from the unrelaxed LP and the SDP relaxations.



NNNN interaction
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Figure: Spinless 1D fermionic lattice NNNN model, L =14, N =9. (a) E/U as a
function of U. (b) Difference between the exact energy and the Kohn-Sham SCE
energies obtained from the unrelaxed LP and the SDP relaxations.



SCE potential
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Figure: The effective potential for the spinless 1D fermionic lattice NNN model,
U=25,L=14, N =9. The relative ¢2 errors for the 2- and 3-marginal
formulations (compared to the unrelaxed LP formulation) are 1.2 x 1072 and

2.7 x 1073, respectively.



Energy and runtime scaling
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Figure: Spinless 1D fermionic lattice NNN model, U =5, N/L =2/3. (a) E/U as
a function of L. (b) Running time as a function of L.



Generalized Hubbard model

We consider a 2D generalized Hubbard type model defined by the
Hamiltonian

g\ i
H=- Z Z (z+1]aa17]¢7+a13+10a%30+hC)

UG{H}
L-1
+U Z Mgt +V Z (Pig1,5M5 + M j41705) -
7.7 1 ,] 1

Here 7 j 1= i ji + 7 js) -



Generalized Hubbard model
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Figure: Spinful 3 x 3 Hubbard model with N = 12.
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Extensions and conclusions

v

As mentioned, possibility for fast algorithm for 2-marginal SDP

v

Can get tighter relaxation by treating 3-marginals (and higher) as
optimization variables

Reference for this talk is arXiv:1905.08322
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