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Background

I Electronic structure theory concerns the N -particle Schrödinger
operator

Ĥ = −1

2

N∑
i=1

∆xi +

N∑
i=1

Vext(xi) + λ
∑
i<j

Vc(xi − xj),

acting on the space H = ΛN (L2(Rd;C)) of antisymmetric functions
ψ(x1, . . . , xN ) ∈ C

I One is often interested in determining the ground-state energy E0; in
particular, this allows one to compute molecular dynamics in the
Born-Oppenheimer approximation

I Electron density ρ : Rd → R defined via

ρ(x) = N

∫
|ψ(x, x2, . . . , xN )|2 dx2 · · · dxN



Background

I Density functional theory [see Kohn and Sham (1965), Levy (1979),
Lieb (1983)]: there exists a universal (i.e., independent of Vext)
functional F [ρ] such that

E0 = inf
ρ

{∫
Vext(x)ρ(x) dx+ F [ρ]

}
I In general F [ρ] is unknown. (Note λ = 0 case is trivial)

I Meanwhile λ→ +∞ limit is the regime of strictly correlated electrons
(SCE), cf. Seidl et al (1999)

I In this limit, exact functional can be expressed in terms of a
multi-marginal optimal transport (MMOT) problem with N marginals,
marginal state space Rd, and pairwise cost function

∑
i<j Vc(xi − xj)



Background

I One hopes that SCE solution could be productively baked into
practical DFT functionals, but MMOT is hard

I See preprint for references; especially relevant motivation is Khoo and
Ying (2018)

I Real-space grid seems fundamental to discretization of SCE (?),
preventing one from making use of small but effective quantum
chemistry basis sets

I Hence we try to come up with a notion of SCE directly in second
quantization, after a choice of basis has already been made

I We can also consider model problems (e.g., Hubbard-like models) not
directly derived via a choice of basis for a first-quantized problem

I Will be similar but different: still MMOT, but now L marginals (where
L is number of sites or basis elements in model) each of state space
{0, 1}



Outline

I Extend the formalism of ‘strictly correlated electrons’ to the setting of
second quantization

I Exact expression for density functional in the limit of infinitely strong
electronic repulsion

I Expression involves a multi-marginal optimal transport (MMOT)
problem with pairwise cost

I Introduce convex relaxation method for approximately solving general
MMOT problems with pairwise cost

I Discuss dual structure and interpretation

I Numerical experiments on model problems



Second quantization

I State space is called the Fock space, denoted by F . The occupation
number (orthonormal) basis set for the Fock space is

{|s1, . . . , sL〉}si∈{0,1},i=1,...,L

I State |ψ〉 ∈ F will be written as a linear combination of occupation
number basis elements as follows:

|ψ〉 =
∑

s1,...,sL∈{0,1}

ψ(s1, . . . , sL) |s1, . . . , sL〉 , ψ(s1, . . . , sL) ∈ C

I Hence the state vector |ψ〉 can be identified with a vector

ψ ∈
⊗LC2 ' C2L

I The fermionic creation operators are defined (via this perspective) as

a†p = σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
p−1 factors

⊗
(

0 0
1 0

)
⊗ I2 ⊗ I2 ⊗ · · · ,

and the annihilation operators ap are the Hermitian adjoints



Second quantization
I More important (and fundamental) than this definition are the CAR:

{ap, a†q} = δpq, {a†p, a†q} = {ap, aq} = 0

I Number operator defined as n̂p := â†pâp, total number operator defined
N̂ =

∑
p n̂p

I The Hamiltonian operator is assumed to take the following form:

Ĥ =

L∑
p,q=1

tpqâ
†
pâq +

L∑
p=1

wpn̂p +

L∑
p,q=1

vpqn̂pn̂q

I Note the restriction of the form of the two-body interaction
I We do not consider the general form

∑L
p,q,r,s=1 vpqrsâ

†
pâ
†
qâsâr that

results from arbitrary quantum chemistry basis set
I Special choices of basis (e.g., Gausslets [White (2017)]) can achieve the

restricted form
I Also covers model problems such as Hubbard model with long-range

Coulomb interaction

I Following DFT, one could think of t, v as fixed, w as problem-specific



Site occupation functional theory (SOFT) / lattice DFT

I Analog of Levy-Lieb in second quantization: SOFT / lattice DFT
[Schönhammer 1995]

I N -particle ground state energy given by

E0 = inf
|ψ〉∈F : 〈ψ|ψ〉=1, 〈ψ|N̂ |ψ〉=N

〈ψ| Ĥ |ψ〉

I Electron density ρ ∈ RL is defined as ρp = 〈ψ|n̂p|ψ〉, which satisfies∑
p ρp = N



Site occupation functional theory (SOFT) / lattice DFT

Then we follow the Levy-Lieb constrained minimization approach [Levy
(1979),Lieb (1983)] and rewrite the ground state minimization problem as
follows:

E0 = inf
ρ∈JN

{∑
p

ρpwp +

(
inf

|ψ〉7→ρ,|ψ〉∈F
〈ψ|
∑
pq

tpqâ
†
pâq +

∑
pq

vpqn̂pn̂q |ψ〉

)}
= inf
ρ∈JN

{W [ρ] + FLL[ρ]},

where

FLL[ρ] := inf
|ψ〉7→ρ,|ψ〉∈F

〈ψ|
∑
pq

tpqâ
†
pâq +

∑
pq

vpqn̂pn̂q |ψ〉 .

Here

JN :=

{
ρ ∈ RL

∣∣∣∣∣ ρ ≥ 0,
∑
p

ρp = N

}
.



SCE
I As in first-quantized SCE, we can lower-bound as

FLL[ρ] ≥ inf
|ψ〉7→ρ

〈ψ|
∑
pq

tpqâ
†
pâq |ψ〉+ inf

|ψ〉7→ρ
〈ψ|
∑
pq

vpqn̂pn̂q |ψ〉

=: T [ρ] + Esce[ρ],

I Then we can lower-bound the ground-state energy in terms of the
‘Kohn-Sham SCE’ energy:

E0 ≥ EKS-SCE := inf
ρ∈JN

{W [ρ] + T [ρ] + Esce[ρ]} ..

I Can derive self-consistency condition via stationarity (or, more
rigorously, convex duality): at optimal ρ, the effective single-particle
Hamiltonian

Ĥ0[ρ] :=

L∑
p,q=1

tpqâ
†
pâq +

L∑
p=1

[wp + (vsce[ρ])p] n̂p

has ground state with density ρ, where vsce[ρ] := ∇ρEsce[ρ]



SCE → MMOT
I Hence up to convergence of self-consistent loop, need only worry about

computing Esce[ρ] and its gradient
I To this end, rewrite

Esce[ρ] = inf
|ψ〉7→ρ

〈ψ|
∑
pq

vpqn̂pn̂q |ψ〉

= inf
|ψ〉7→ρ

∑
s1,...,sL

∑
pq

vpqspsq|ψ(s1, . . . , sL)|2

= inf
µ∈Π(ρ)

∑
s1,...,sL

∑
pq

vpqspsqµ(s1, . . . , sL),

where Π(ρ) is the space of joint probability mass functions on {0, 1}L
with marginals satisfying

µ(1)
p (s) = (1− ρp)δs0 + ρpδs1, s = 0, 1.

I Considering the µ
(1)
p alternately as vectors, we also write

µ(1)
p = [1− ρp, ρp]>



SCE → MMOT

I Define the cost function C : {0, 1}L → R by

C(s1, . . . , sL) :=
∑
pq

vpqspsq.

Then our SCE energy may be written

Esce[ρ] = inf
µ∈Π(ρ)

∑
s1,...,sL

C(s1, . . . , sL)µ(s1, . . . , sL) = inf
µ∈Π(ρ)

〈C, µ〉,

I This is precisely the form of a MMOT problem

I In other words, minimization of a linear functional of a joint probability
measure subject to constraints on all of the marginals of the measure
[see, e.g., Pass (2015)]

I Note that dimension of the feasible space for this problem is
exponential in L

I Gradient vsce[ρ] defined in terms of the Kantorovich potentials
(solutions to dual LP)



Pairwise cost and representability
I Efficient relaxation enabled by pairwise cost structure

C(s1, . . . , sL) =
∑
p 6=q

vpqspsq =:
∑
p 6=q

Cpq(sp, sq).

I Accordingly, the objective function can be written as

Esce[ρ] = inf
µ∈Π(ρ)

∑
p 6=q
〈Cpq, µ(2)

pq 〉,

where the 2-marginals µ
(2)
pq are defined implicitly in terms of µ

I We also identify µ
(2)
pq and Cpq with 2× 2 matrices, e.g.,

µ(2)
pq =

[
µ

(2)
pq (0, 0) µ

(2)
pq (0, 1)

µ
(2)
pq (1, 0) µ

(2)
pq (1, 1)

]
,

so
Esce[ρ] = inf

µ∈Π(ρ)

∑
p 6=q

Tr[Cpqµ
(2)
pq ]

I The 2-marginals must be jointly representable; exponentially hard to
enforce exactly



Relaxation of representability condition

I In the following we adopt the notation

s = (s1, . . . , sL) ∈ {0, 1}L

I For such s, define es ∈ R2×2×···×2, via

es = es1 ⊗ · · · ⊗ esL ,

where we adopt the (zero-indexing) convention e0 = [1, 0]>,
e1 = [0, 1]>

I Any probability measure µ on {0, 1}L can be written as a convex
combination of the es, i.e.,

µ =
∑
s

ases, where
∑
s

as = 1, as ≥ 0



Relaxation of representability condition

I It follows that the 1- and 2-marginals can be written

µ(1)
p =

∑
s

as esp , µ(2)
pq =

∑
s

as esp ⊗ esq =
∑
s

as espe
>
sq

I Now define

M = M({as}) =
∑
s

as

es1...
esL

 [e>s1 · · · e>sL] ,
I Then M is the matrix of 2× 2 blocks Mpq given by

Mpq =

{
diag(µ

(1)
p ), p = q,

µ
(2)
pq , p 6= q

I Then let C = (Cpq) ∈ R(2L)×(2L) be the matrix of the 2× 2 blocks
Cpq defined above, which specifies the pairwise cost on each pair of
marginals



Relaxation of representability condition

I Then objective can in fact be rewritten as∑
p 6=q

Tr[Cpqµ
(2)
pq ] = Tr[CM ]

I Hence the MMOT problem is equivalently

minimize
M∈R(2L)×(2L), {as}s∈{0,1}L

Tr(CM)

subject to M =
∑
s

as

es1...
esL

 [e>s1 · · · e>sL] ,
Mpp = diag(µ(1)

p ) for all p = 1, . . . , L,∑
s

as = 1, as ≥ 0 for all s ∈ {0, 1}L.



Relaxation of representability condition

I At this point, we have not alleviated its exponential complexity;
indeed, note that {as}s∈{0,1}L is a vector of size 2L

I We relax by omitting {as}s∈{0,1}L entirely from the optimization,
retaining only M as an optimization variable and enforcing several
necessary constraints on M that are satisfied by the solution of the
exact problem

I First, note that M ≥ 0 and M � 0

I Second, the fact that the 1-marginals can be written in terms of the
2-marginals imposes additional local consistency constraints on M



Relaxation of representability condition

I Then we obtain the relaxation (the ‘primal 2-marginal SDP’):

minimize
M∈R(2L)×(2L)

Tr(CM)

subject to M � 0,

Mpq ≥ 0 for all p, q = 1, . . . , L (p < q),

Mpq12 = µ(1)
p for all p, q = 1, . . . , L (p < q),

M>pq12 = µ(1)
q for all p, q = 1, . . . , L (p < q),

Mpp = diag(µ(1)
p ) for all p = 1, . . . , L

I Note that the optimal value of the primal problem is in fact attained
because the constraints define a compact feasible set

I The fact that the marginal state space is {0, 1} is immaterial to the
derivation; i.e., works for arbitrary MMOT problem with pairwise cost



Duality

I Results will only be sketched

I Writing dual in the right way reveals interesting structure; can be
interpreted as solving an ordinary OT problem for each pair of
marginals; these OT problems are completely decoupled, modulo
coupling via a globally determined effective contribution to their cost
functions

I Suggests fast algorithms for future work, as well as hybridization with
existing methods for ordinary OT

I Careful understanding of dual also allows one to prove not only strong
duality, but also that dual optimizer is attained (nontrivial because
Slater’s condition fails)



Model problem
Here we consider a 1D spinless Hubbard-like model defined by the
Hamiltonian of Eq. (7), in which we take

tpq =

{
1 if |q − p| = 1,

0 otherwise

and consider two different cases of v, with next-nearest neighbor (NNN)
interaction,

vpq =


U/2 if |q − p| = 1,

U/40 if |q − p| = 2,

0 otherwise

and next-next-nearest neighbor interaction (NNNN)

vpq =


U/2 if |q − p| = 1,

U/20 if |q − p| = 2,

U/200 if |q − p| = 3,

0 otherwise



NNN interaction
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Figure: Spinless 1D fermionic lattice NNN model, L = 14, N = 9. (a) E/U as a
function of U . (b) Difference between the exact energy and the Kohn-Sham SCE
energies obtained from the unrelaxed LP and the SDP relaxations.



NNNN interaction
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Figure: Spinless 1D fermionic lattice NNNN model, L = 14, N = 9. (a) E/U as a
function of U . (b) Difference between the exact energy and the Kohn-Sham SCE
energies obtained from the unrelaxed LP and the SDP relaxations.



SCE potential
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Figure: The effective potential for the spinless 1D fermionic lattice NNN model,
U = 5, L = 14, N = 9. The relative `2 errors for the 2- and 3-marginal
formulations (compared to the unrelaxed LP formulation) are 1.2× 10−2 and
2.7× 10−3, respectively.



Energy and runtime scaling
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Figure: Spinless 1D fermionic lattice NNN model, U = 5, N/L = 2/3. (a) E/U as
a function of L. (b) Running time as a function of L.



Generalized Hubbard model

We consider a 2D generalized Hubbard type model defined by the
Hamiltonian

Ĥ =−
L−1∑
i,j=1

∑
σ∈{↑,↓}

(
â†i+1,j;σâi,j;σ + â†i,j+1;σâi,j;σ + h.c.

)

+ U

L∑
i,j=1

n̂i,j;↑n̂i,j;↓ + V

L−1∑
i,j=1

(n̂i+1,jn̂i,j + n̂i,j+1n̂i,j) .

Here n̂i,j := n̂i,j;↑ + n̂i,j;↓.



Generalized Hubbard model
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Figure: Spinful 3× 3 Hubbard model with N = 12.



Extensions and conclusions

I As mentioned, possibility for fast algorithm for 2-marginal SDP

I Can get tighter relaxation by treating 3-marginals (and higher) as
optimization variables

I Reference for this talk is arXiv:1905.08322
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