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Sampling

o Given the ability to evaluate U(x), for x € X', we want to draw
independent samples from

1
w(x) = ?e*U(X),

where Z is a suitable (unknown) normalizing constant

@ Ubiquitous applications in scientific computing:
o Bayesian inference (sampling from posterior distribution)
o Data science, computational astronomy, inverse problems, etc.
o Often low-to-moderate dimensional but too high-dimensional for
quadrature
Computational chemistry (sampling molecular configurations)
Quantum Monte Carlo (many methods)
Optimization (simulated annealing, etc.)
...and many more!



Markov chain Monte Carlo

o Most widely-used approach is Markov chain Monte Carlo (MCMC)
@ ldea: construct a Markov chain g(y | x) whose invariant/equilibrium
measure is 7
@ Major generic frameworks for MCMC (can be combined!)—
o Metropolis-Hastings: let g be any Markov chain, propose move x — x’

according to g and accept with probability

m(x') q(x|x')
m(x) q(x’ \X))

A = min (17

o Integrator-based methods: chain defined by discrete-time integration of
an SDE

o For example overdamped Langevin dynamics are defined by
dXe = —VU(X;) dt + V2 dB,

and can be Metropolis-adjusted (MALA)
@ See also underdamped Langevin and Hamiltonian Monte Carlo (HMC)



Metastability

@ All of these generic approaches can suffer from metastability

@ In this case, the autocorrelation time (i.e., number of steps required to
get an effectively independent sample) can be arbitrarily long

Figure: lllustration of metastability for Langevin dynamics. Colors indicate
values of U. (Recall m x e7V.)



Interacting ensemble MCMC

o ldea: instead of sampling x ~ 7(x) directly, we consider an ensemble
x = (x1,...,xy) € XN

of N walkers and sample

N
x ~ M(x) = Hﬂ'(x,-)
i=1
@ Then each walker individually samples from 7, as originally desired
@ Although the walkers are distributed independently, our proposal will
allow interaction between them

o We will Metropolize our interacting-walker proposal to preserve the joint
distribution I



Teleporting proposal

@ Assume we are given any proposal g(y | x)

o Uniformly select walker index j € {1,..., N}

e The j-th walker will be cloned and then moved according to g
o Specifically, sample z ~ g(- | x;)



Teleporting proposal

Figure: lllustration of teleporting proposal. Think of the target density 7 as uniform
for simplicity.



Teleporting proposal

@ Then we will sample an index i (possibly i = j) for deletion

@ i.e., we will propose x; < z
e If i #j, it's as if we have proposed teleporting walker i to be near walker j

@ Specifically, i is sampled according to the importance weights

q(xi | z) + ZQ;,' q(xi | x«)
m(x;)

w; X 5
where the weights are normalized to sum to one
o Choice guarantees acceptance probability of 1 in the infinite-walker limit

N — oo
e We do not delete any walker that is ‘lonely,” unless we have just cloned

that walker



Teleporting proposal

Unlikely to delete

Figure: lllustration of teleporting proposal. Think of the target density 7 as uniform
for simplicity.



Mean-field limit

@ Can try to get theoretical understanding via mean-field limit

@ In the limit of large N we can approximate the empirical measure of the
walker positions

T
o= N Z‘Sx,-
i=1

by a continuous density function, i.e.,

diu(x) ~ p(x) dx



Mean-field limit

@ Obtain mean-field evolution for the density

Orpl) = |1~ legﬂ ()

@ Z, is the constant that guarantees conservation of total probability

o Q is the Markov transition kernel operator

Qp(x) = / a(x|y) ply) dy



Mean-field limit

@ The mean-field dynamics enjoy convergence to 7 that is monotone in
the Pearson y2-divergence

x2(7r||p>=/(1—’;)2pdx

o Aside: dynamics also admit interpretation as a gradient flow for the
reversed x2-divergence

Theorem (ML, Weare, Zhang)

Under suitable technical conditions, x*(r || p;) is monotone decreasing.
Moreover, there exists C independent of t such that

(|| pe) < Cem /=,

where Yoo 1= 1|7/ Q7| .



Mean-field limit

Theorem (ML, Weare, Zhang)

Under suitable technical conditions, x?(r || p+) is monotone decreasing.
Moreover, there exists C independent of t such that

(|| pe) < Cem /=,

where Yoo := 1|7/ O7 || 0.

o Asymptotic rate of convergence for the non-interacting ensemble is
controlled by the spectral gap of Q

o Asymptotic rate of convergence for our scheme is not limited by the
spectral gap

e For a narrow proposal, rate ~ 2 independent of proposal



Illustrative example

o Consider the double-well potential
U(x) = B(x* = x*),

where (3 is an inverse temperature parameter controlling the depth of the

two wells
1 2
@ Use Gaussian proposal g(y | x) e 22

Figure: Graph of 7(x) for 8 = 5.



Illustrative example
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Figure: p¢ according to the mean-field dynamics with 8 =5, 0 = 0.0125 at times
t=0,25,5,7.5, 10, 12.5, 15, 17.5, 20, 22.5, ordered left-to-right, then
bottom-to-top.



Illustrative example
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Figure: p: according to the mean-field dynamics for a non-interacting ensemble
with § =5, o = 0.0125 at several different times. Note that even by time
t = 1000, the dynamics are far from convergence.



Illustrative example
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Figure: Convergence of Px~,(X > 0) for interacting dynamics (left) and
non-interacting dynamics (right), for several different values of 3, 0. Note the
different horizontal and vertical axis scales at left and right.



Bayesian hyperparameter estimation

@ We consider a multimodal Bayesian posterior sampling problem
introduced in [Yao, Vehtari, and Gelman (2020)]

o Goal is to estimate hyperparameters in Gaussian process regression

@ Observe data (x;, y;) and assume that
yi = f(xi) +€i,

where f ~ GP(0,%), g; ~ N(0,0?) i.i.d. noise, and

@ Place indepedent Cauchy priors on our hyperparameters 6 = («a, p, o)
@ Sample from posterior distribution p(8|y)



Bayesian hyperparameter estimation
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Figure: Posterior (o, p) marginal (left) and p marginal (right).




Bayesian hyperparameter estimation

N 1 10 | 50
IAT || 2111 | 867 | 97

Table: Integrated autocorrelation time. We see an over 20-fold efficiency gain by
considering an interacting scheme with N = 50 instead of a single walker, assuming
cost is dominated by the the number of density evaluations (usually the
bottleneck).



Results not shown

@ Similar results for the case of multivariate Gaussian process, where the
data x; € R3 (9-dimensional hyperparamter)

o 16-fold efficiency gain of N = 100 over N =1
@ Paper also considers extension for interaction of a subset of variables
@ Ongoing work:
o Push the advantage to larger ensemble scales (N ~ 10°-10°) with a
modified scheme allowing fast kernel operations for walker interaction
and parallel density evaluations

e Nonlocal proposals can still provide huge computational speedup even for
unimodal densities!

IAT

N
Figure: IAT as a function of ensemble size for GPR hyperparameter posterior
sampling.



Related work

o Related work arises by starting with a Fokker-Planck equation for a
birth-death stochastic process, then considering a discrete-time particle
approximation

e Y. Lu, J. Lu, and J. Nolen [arXiv:1905.09863]

o G. Rostkoff, S. Jelassi, J. Bruna, and E. Vanden-Eijnden
[arXiv:1902.01843]

e M. Gabrie, G. Rostkoff, and E. Vanden-Eijnden [arXiv:2105.12603]



© Fast Entropically Regularized SDP

@ ML, Fast randomized entropically regularized semidefinite programming,
preprint [arXiv:2303.12133].




© Fast Entropically Regularized SDP

@ ML, Fast randomized entropically regularized semidefinite programming,
preprint [arXiv:2303.12133].




Why SDP?

@ Semidefinite programs arise in many settings, often from the relaxation
of an underlying difficult problem

@ The most fundamental examples are from 0-1 combinatorial
optimization, starting from [Goemans and Williamson (1995)]
o See also the Lassere Hierarchy, starting with [Lasserre (2001)], as well as
[Wainright and Jordan (2008)], for systematic approaches

@ My interest in SDP comes from marginal relaxations for scientific
computing problems:
o Density functional theory [Khoo, Lin, ML, and Ying (2020)]
e Continuous global optimization [Chen, Khoo, and ML (2020)]
o Quantum many-body problems [Lin and ML (2022)], [Khoo and ML (2022)]



Max-Cut problem

@ Given a graph (V, E), want to color the vertices white/black so that as
many edges as possible connect unlike colors

U el
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\

Figure: Maximum cut of a small graph

o Formally, if the vertices are indexed by i =1,..., n, want to solve:
min Xi X
{-11} Z i
ij:(ij)EE

o NP-complete!
e Hard to do much better than enumerating all 2" possibilities for x = (x;)



Goemans-Williamson relaxation

@ On the domain x € {—1,1}", rewrite the objective:

N

Z XiXj = Z Ajjxixj = x T Ax = Tr[AxxT],
ij:(ij)EE ij=1

where A is the adjacency matrix of the graph
o Let
X =xx"
and observe that diag(X) =1, X = 0

o If we optimize X € R"™" subject only to these constraints, we obtain a

relaxation of the original problem, providing a lower bound on the
optimal value



Goemans-Williamson relaxation

@ Specifically
minimize Tr[AX]
XeRnxn
subject to X =0,

diag(X) =1

@ This relaxation is due to Goemans and Williamson (1995)

e They also provide a randomized rounding procedure from the solution X
to an element x € {—1,1}"

e Plugging in x yields an upper bound guaranteed to yield an upper bound
achieving an approximation ratio of

a~ 0.878

@ In fact it is conjectured [Khot et al (2007)] to be the best possible
guaranteed approximation ratio, and it is known [Trevisan et al (2000)]
that > 0.941 is NP-hard

@ Aside from interest in Max-Cut per se, the GW relaxation is the
prototypical semidefinite relaxation and SDP



General SDP

@ A general SDP can be written
minimize Tr[CX]
XeRan
subject to X =0,
TI’[AkX] = bk, k= 1,...,m,

though sometimes alternative equivalent presentations may be preferred
based on structure



Review of optimization approaches

@ How to solve an SDP? There are several categories of methods:

o Interior point methods: strong convergence guarantees but very poor
scaling per iteration

o Augmented Lagrangian / ADMM-type methods: weaker convergence
guarantees but optimal-in-general O(n?) scaling per iteration (e.g.,
SDPNAL, cf. Toh et al)

e Low-rank methods: exploit low-rank assumption on solution, e.g.,
SDPLR [Burer and Monteiro (2003)] and SketchyCGAL [Yurtsever et al
(2021)]

o TCS-style algorithms: e.g., MMWU [Arora and Kale (2007)]

o We want linear scaling (assuming sparsity of the cost and constraint
matrices) without a low-rank assumption
e The MMWU has nice theoretical scaling guarantees but impractical to
implement!
o This work: first practical linear-scaling algorithm achieving a fixed
approximation ratio for Max-Cut (though applies more broadly)



Entropic regularization

@ Inspired by the success of the entropic regularization of optimal
transport [Cuturi 2013], which is a /inear program, we are motivated
to consider the entropic regularization of SDP as a general

computational tool
e In addition to quantum statistical mechanics literature, see [Krechetov

(2019)], [Lin and ML (2022)], and [Pavlov et al (2022)] for other uses
@ For a positive definite matrix X define the von Neumann entropy

S(X) = Tr[X log X] — Tr[X]

o Can be viewed as a quantum analog of Shannon'’s classical entropy,
fundamental in quantum information theory, cf. [Nielsen and Chuang]



Entropic regularization

o Von Neumann entropy noncommutative/quantum analog of classical
entropy, appearing in quantum information theory

o Consider the regularized problem, where 3 € 0, 00) is a regularization
parameter (‘inverse temperature'):

inimize  Tr[CX “15(x
minimize r[CX] + 877S(X)
subject to  Tr[AxX]=bk, k=1,...,m

o Note that the entropy acts as a barrier to the boundary of {X = 0} and
also makes the problem strictly convex



Dual problem

Restrict to case of diagonal constraint diag(X) = b for simplicity

(]

The dual problem is unconstrained:

(]

max b-A— B Tr e—ﬂ(c—diag()\))}
AER®

(]

In quantum statistical mechanics interpretation:

Cy := C — diag(\) is an effective Hamiltonian

B is the inverse temperature

Zg . := Tr[e #\] is the partition function

Xz, := e P is the (unnormalized) density operator
Fg» = —B71Zs» is (kind of) the free energy

The gradient of the dual objective
b— diag(Xﬁ_A)

@ Hence we want to find a dual solution A* such that diag(Xg <) = b,
and this Xj »« is in fact the primal solution of the regularized problem



Stochastic diagonal estimation

o How to compute diag(Xs ) = diag(e™#) ?
o Forming the matrix exponential, even if C, is sparse, consumes O(n3)
cost

@ Randomized approach which has appeared in the GPR literature [Mathur
et al (2021)]:

diag(X) = Ez~y |(XM?2) © (XM?2)],

where z is a standard Gaussian random vector
@ We prove concentration bounds for the corresponding estimator
o Relative error of estimator is essentially problem-independent
@ Hence we only need to compute matrix-vector multiplications

1/2_ 8¢,
XB’/\z—e 252z

o Fast matrix-free algorithm available [Al-Mohy and Higham (2011)], or
alternatively matrix-free Chebyshev expansion [Driscoll, Hale, and
Trefethen (2014)]



Additional comments

@ In fact for Max-Cut we do not apply dual gradient ascent, but introduce
a specialized noncommutative matrix scaling approach
o But still makes use of the same estimator
o Not discussed: ‘fermionic’ entropic regularization allows us to solve
other problems, such as the spectral embedding of a graph with n
vertices into R¥
o Improve O(nk?) of standard eigensolver approach to O(nk) randomized
approximate algorithm



Max-Cut results: convergence profile

Convergence of noncommutative matrix scaling
-2.2 T T T T T T

Unregularized dual objective

e = 4000
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Iteration

Figure: Convergence profile for various system sizes n and regularization parameters
B (solid lines for 5 = 10, dotted lines for § = 32, dashed lines for § = 100)



Max-Cut results: approximation ratio

Approximation ratio
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Figure: Approximation ratio obtained as a function of system size, for various
regularization parameters 3
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Thank you very much for your attention!
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