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Sampling

Given the ability to evaluate U(x), for x ∈ X , we want to draw
independent samples from

π(x) =
1
Z
e−U(x),

where Z is a suitable (unknown) normalizing constant
Ubiquitous applications in scientific computing:

Bayesian inference (sampling from posterior distribution)
Data science, computational astronomy, inverse problems, etc.
Often low-to-moderate dimensional but too high-dimensional for
quadrature

Computational chemistry (sampling molecular configurations)
Quantum Monte Carlo (many methods)
Optimization (simulated annealing, etc.)
...and many more!



Markov chain Monte Carlo

Most widely-used approach is Markov chain Monte Carlo (MCMC)
Idea: construct a Markov chain g(y | x) whose invariant/equilibrium
measure is π
Major generic frameworks for MCMC (can be combined!)—

Metropolis-Hastings: let q be any Markov chain, propose move x → x ′

according to q and accept with probability

A = min

(
1,
π(x ′)

π(x)

q(x | x ′)
q(x ′ | x)

)
Integrator-based methods: chain defined by discrete-time integration of
an SDE

For example overdamped Langevin dynamics are defined by

dXt = −∇U(Xt) dt +
√
2 dBt ,

and can be Metropolis-adjusted (MALA)
See also underdamped Langevin and Hamiltonian Monte Carlo (HMC)



Metastability

All of these generic approaches can suffer from metastability
In this case, the autocorrelation time (i.e., number of steps required to
get an effectively independent sample) can be arbitrarily long

Figure: Illustration of metastability for Langevin dynamics. Colors indicate
values of U. (Recall π ∝ e−U .)



Interacting ensemble MCMC

Idea: instead of sampling x ∼ π(x) directly, we consider an ensemble

x = (x1, . . . , xN) ∈ XN

of N walkers and sample

x ∼ Π(x) =
N∏
i=1

π(xi )

Then each walker individually samples from π, as originally desired
Although the walkers are distributed independently, our proposal will
allow interaction between them

We will Metropolize our interacting-walker proposal to preserve the joint
distribution Π



Teleporting proposal

Assume we are given any proposal q(y | x)

Uniformly select walker index j ∈ {1, . . . ,N}
The j-th walker will be cloned and then moved according to q
Specifically, sample z ∼ q(· | xj)



Teleporting proposal

Figure: Illustration of teleporting proposal. Think of the target density π as uniform
for simplicity.



Teleporting proposal

Then we will sample an index i (possibly i = j) for deletion
i.e., we will propose xi ← z

If i 6= j , it’s as if we have proposed teleporting walker i to be near walker j

Specifically, i is sampled according to the importance weights

wi ∝
q(xi | z) +

∑N
k 6=i q(xi | xk)

π(xi )
,

where the weights are normalized to sum to one
Choice guarantees acceptance probability of 1 in the infinite-walker limit
N →∞
We do not delete any walker that is ‘lonely,’ unless we have just cloned
that walker



Teleporting proposal

Figure: Illustration of teleporting proposal. Think of the target density π as uniform
for simplicity.



Mean-field limit

Can try to get theoretical understanding via mean-field limit
In the limit of large N we can approximate the empirical measure of the
walker positions

µ :=
1
N

N∑
i=1

δxi

by a continuous density function, i.e.,

dµ(x) ≈ ρ(x) dx



Mean-field limit

Obtain mean-field evolution for the density

∂tρ(x) =

[
1− 1

Zρ

ρ(x)

π(x)

]
Qρ(x)

Zρ is the constant that guarantees conservation of total probability∫
∂tρ dx = 0

Q is the Markov transition kernel operator

Qρ(x) =

∫
q(x | y) ρ(y) dy



Mean-field limit

The mean-field dynamics enjoy convergence to π that is monotone in
the Pearson χ2-divergence

χ2(π ‖ ρ) =

∫ (
1− π

ρ

)2

ρ dx

Aside: dynamics also admit interpretation as a gradient flow for the
reversed χ2-divergence

Theorem (ML, Weare, Zhang)

Under suitable technical conditions, χ2(π ‖ ρt) is monotone decreasing.
Moreover, there exists C independent of t such that

χ2(π ‖ ρt) ≤ Ce−t/γ∞ ,

where γ∞ := 1
2‖π/Qπ‖∞.



Mean-field limit

Theorem (ML, Weare, Zhang)

Under suitable technical conditions, χ2(π ‖ ρt) is monotone decreasing.
Moreover, there exists C independent of t such that

χ2(π ‖ ρt) ≤ Ce−t/γ∞ ,

where γ∞ := 1
2‖π/Qπ‖∞.

Asymptotic rate of convergence for the non-interacting ensemble is
controlled by the spectral gap of Q
Asymptotic rate of convergence for our scheme is not limited by the
spectral gap

For a narrow proposal, rate ≈ 2 independent of proposal



Illustrative example

Consider the double-well potential

U(x) = β(x4 − x2),

where β is an inverse temperature parameter controlling the depth of the
two wells
Use Gaussian proposal q(y | x) ∝ e−

1
2σ2 (y−x)

2

t = 22.5

Figure: Graph of π(x) for β = 5.



Illustrative example

t = 0 t = 2.5 t = 5 t = 7.5 t = 10

t = 12.5 t = 15 t = 17.5 t = 20 t = 22.5

Figure: ρt according to the mean-field dynamics with β = 5, σ = 0.0125 at times
t = 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20 , 22.5, ordered left-to-right, then
bottom-to-top.



Illustrative example
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Figure: ρt according to the mean-field dynamics for a non-interacting ensemble
with β = 5, σ = 0.0125 at several different times. Note that even by time
t = 1000, the dynamics are far from convergence.



Illustrative example
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Figure: Convergence of PX∼ρ(X ≥ 0) for interacting dynamics (left) and
non-interacting dynamics (right), for several different values of β, σ. Note the
different horizontal and vertical axis scales at left and right.



Bayesian hyperparameter estimation

We consider a multimodal Bayesian posterior sampling problem
introduced in [Yao, Vehtari, and Gelman (2020)]
Goal is to estimate hyperparameters in Gaussian process regression
Observe data (xi , yi ) and assume that

yi = f (xi ) + εi ,

where f ∼ GP(0,Σ), εi ∼ N (0, σ2) i.i.d. noise, and

Σ(x1, x2) = α2
(
− (x1 − x2)2

ρ2

)
Place indepedent Cauchy priors on our hyperparameters θ = (α, ρ, σ)

Sample from posterior distribution p(θ | y)



Bayesian hyperparameter estimation

Figure: Posterior (α, ρ) marginal (left) and ρ marginal (right).



Bayesian hyperparameter estimation

N 1 10 50
IAT 2111 867 97

Table: Integrated autocorrelation time. We see an over 20-fold efficiency gain by
considering an interacting scheme with N = 50 instead of a single walker, assuming
cost is dominated by the the number of density evaluations (usually the
bottleneck).



Results not shown

Similar results for the case of multivariate Gaussian process, where the
data xi ∈ R3 (9-dimensional hyperparamter)

16-fold efficiency gain of N = 100 over N = 1

Paper also considers extension for interaction of a subset of variables
Ongoing work:

Push the advantage to larger ensemble scales (N ∼ 105-106) with a
modified scheme allowing fast kernel operations for walker interaction
and parallel density evaluations
Nonlocal proposals can still provide huge computational speedup even for
unimodal densities!

Figure: IAT as a function of ensemble size for GPR hyperparameter posterior
sampling.



Related work

Related work arises by starting with a Fokker-Planck equation for a
birth-death stochastic process, then considering a discrete-time particle
approximation

Y. Lu, J. Lu, and J. Nolen [arXiv:1905.09863]
G. Rostkoff, S. Jelassi, J. Bruna, and E. Vanden-Eijnden
[arXiv:1902.01843]
M. Gabrie, G. Rostkoff, and E. Vanden-Eijnden [arXiv:2105.12603]
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Why SDP?

Semidefinite programs arise in many settings, often from the relaxation
of an underlying difficult problem
The most fundamental examples are from 0-1 combinatorial
optimization, starting from [Goemans and Williamson (1995)]

See also the Lassere Hierarchy, starting with [Lasserre (2001)], as well as
[Wainright and Jordan (2008)], for systematic approaches

My interest in SDP comes from marginal relaxations for scientific
computing problems:

Density functional theory [Khoo, Lin, ML, and Ying (2020)]
Continuous global optimization [Chen, Khoo, and ML (2020)]
Quantum many-body problems [Lin and ML (2022)], [Khoo and ML (2022)]



Max-Cut problem

Given a graph (V ,E ), want to color the vertices white/black so that as
many edges as possible connect unlike colors

Figure: Maximum cut of a small graph

Formally, if the vertices are indexed by i = 1, . . . , n, want to solve:

min
{−1,1}n

∑
i,j : (i,j)∈E

xixj

NP-complete!
Hard to do much better than enumerating all 2n possibilities for x = (xi )



Goemans-Williamson relaxation

On the domain x ∈ {−1, 1}N , rewrite the objective:

∑
i,j : (i,j)∈E

xixj =
N∑

i,j=1

Aijxixj = x>Ax = Tr[Axx>],

where A is the adjacency matrix of the graph
Let

X = xx>

and observe that diag(X ) = 1, X � 0
If we optimize X ∈ Rn×n subject only to these constraints, we obtain a
relaxation of the original problem, providing a lower bound on the
optimal value



Goemans-Williamson relaxation

Specifically
minimize
X∈Rn×n

Tr[AX ]

subject to X � 0,
diag(X ) = 1

This relaxation is due to Goemans and Williamson (1995)
They also provide a randomized rounding procedure from the solution X
to an element x ∈ {−1, 1}n
Plugging in x yields an upper bound guaranteed to yield an upper bound
achieving an approximation ratio of

α ≈ 0.878

In fact it is conjectured [Khot et al (2007)] to be the best possible
guaranteed approximation ratio, and it is known [Trevisan et al (2000)]
that ≥ 0.941 is NP-hard
Aside from interest in Max-Cut per se, the GW relaxation is the
prototypical semidefinite relaxation and SDP



General SDP

A general SDP can be written

minimize
X∈Rn×n

Tr[CX ]

subject to X � 0,
Tr[AkX ] = bk , k = 1, . . . ,m,

though sometimes alternative equivalent presentations may be preferred
based on structure



Review of optimization approaches

How to solve an SDP? There are several categories of methods:
Interior point methods: strong convergence guarantees but very poor
scaling per iteration
Augmented Lagrangian / ADMM-type methods: weaker convergence
guarantees but optimal-in-general O(n3) scaling per iteration (e.g.,
SDPNAL, cf. Toh et al)
Low-rank methods: exploit low-rank assumption on solution, e.g.,
SDPLR [Burer and Monteiro (2003)] and SketchyCGAL [Yurtsever et al
(2021)]
TCS-style algorithms: e.g., MMWU [Arora and Kale (2007)]

We want linear scaling (assuming sparsity of the cost and constraint
matrices) without a low-rank assumption

The MMWU has nice theoretical scaling guarantees but impractical to
implement!

This work: first practical linear-scaling algorithm achieving a fixed
approximation ratio for Max-Cut (though applies more broadly)



Entropic regularization

Inspired by the success of the entropic regularization of optimal
transport [Cuturi 2013], which is a l inear program, we are motivated
to consider the entropic regularization of SDP as a general
computational tool

In addition to quantum statistical mechanics literature, see [Krechetov
(2019)], [Lin and ML (2022)], and [Pavlov et al (2022)] for other uses

For a positive definite matrix X define the von Neumann entropy

S(X ) = Tr[X logX ]− Tr[X ]

Can be viewed as a quantum analog of Shannon’s classical entropy,
fundamental in quantum information theory, cf. [Nielsen and Chuang]



Entropic regularization

Von Neumann entropy noncommutative/quantum analog of classical
entropy, appearing in quantum information theory
Consider the regularized problem, where β ∈ 0,∞) is a regularization
parameter (‘inverse temperature’):

minimize
X�0

Tr[CX ] + β−1S(X )

subject to Tr[AkX ] = bk , k = 1, . . . ,m

Note that the entropy acts as a barrier to the boundary of {X � 0} and
also makes the problem strictly convex



Dual problem

Restrict to case of diagonal constraint diag(X ) = b for simplicity
The dual problem is unconstrained:

max
λ∈Rn

b · λ− β−1Tr
[
e−β(C−diag(λ))

]
In quantum statistical mechanics interpretation:

Cλ := C − diag(λ) is an effective Hamiltonian
β is the inverse temperature
Zβ,λ := Tr[e−βCλ ] is the partition function
Xβ,λ := e−βCλ is the (unnormalized) density operator
Fβ,λ := −β−1Zβ,λ is (kind of) the free energy

The gradient of the dual objective

b − diag(Xβ,λ)

Hence we want to find a dual solution λ? such that diag(Xβ,λ?) = b,
and this Xβ,λ? is in fact the primal solution of the regularized problem



Stochastic diagonal estimation

How to compute diag(Xβ,λ) = diag(e−βCλ) ?
Forming the matrix exponential, even if Cλ is sparse, consumes O(n3)
cost

Randomized approach which has appeared in the GPR literature [Mathur
et al (2021)]:

diag(X ) = Ez∼N

[
(X 1/2z)� (X 1/2z)

]
,

where z is a standard Gaussian random vector
We prove concentration bounds for the corresponding estimator

Relative error of estimator is essentially problem-independent

Hence we only need to compute matrix-vector multiplications

X
1/2
β,λ z = e−

β
2 Cλz

Fast matrix-free algorithm available [Al-Mohy and Higham (2011)], or
alternatively matrix-free Chebyshev expansion [Driscoll, Hale, and
Trefethen (2014)]



Additional comments

In fact for Max-Cut we do not apply dual gradient ascent, but introduce
a specialized noncommutative matrix scaling approach

But still makes use of the same estimator

Not discussed: ‘fermionic’ entropic regularization allows us to solve
other problems, such as the spectral embedding of a graph with n
vertices into Rk

Improve O(nk2) of standard eigensolver approach to O(nk) randomized
approximate algorithm



Max-Cut results: convergence profile
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Figure: Convergence profile for various system sizes n and regularization parameters
β (solid lines for β = 10, dotted lines for β = 32, dashed lines for β = 100)



Max-Cut results: approximation ratio
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Thank you very much for your attention!
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