Quantized Tensor Trains for Integral Equations

Michael Kielstra

$$
\begin{gathered}
a \sigma(x)+\int_{\Omega} K(x, y) \sigma(y) d \Omega_{y}=f(x) \\
A \sigma=f
\end{gathered}
$$

Uses:

- Various physical phenomena (especially $K(x, y)=\kappa(|x-y|)$).
- Mesh-free methods for PDEs.

Quick Reminder: Solving Matrix Equations

GMRES, CG, et al. minimize a residual norm $\sigma \mapsto\|A \sigma-f\|$.
To compute this, we only need a map $\sigma \mapsto A \sigma$.
If A is poorly-conditioned, this can converge slowly.
If we can define P such that $P(x) \approx A^{-1} x$, we can solve $P(A) \sigma=P(f)$ instead.

The Plan

Idea: Use a QTT to represent A.

1. Factor A into a QTT.
2. Do matvecs by QTTs (which lets us invert A with GMRES).
3. Do approximate inverses in QTT form (which lets us precondition GMRES).

Step 1: Quantizing A

Idea: Split A into a grid which defines a source tree and a target tree.
Definition: A box in the source tree and a box in the target tree are well-separated if the distance between them is at least the diameter of the largest box.

Intuition: Well-separated source-leaf/target-leaf pairs are far from the main diagonal of the matrix A.

Definition: A is FMM-compressible if any matrix sub-block representing a wellseparated pair of boxes has maximum numerical rank k_{ϵ} for some fixed k_{ϵ}.

Tensorizing A

Form the product tree, where every node represents a node in the source and the target trees at once.

Think of A as a tensor where each element is given by a path through the product tree.

Note that unfolding matrices of A are not the same as the original matrix!

Does This Work?

Definition: A kernel $K(x, y)$ is trans/ation-invariant if $K(x+\omega, y+\omega)=K(x, y)$ for all ω.

Theorem: Let A be FMM-compressible and let the kernel K be translationinvariant. Then the QTT representation has bounded rank $r=\max \left(r_{k}\right) \leq k_{\epsilon}^{2}+4 D-1$, where D is the dimension of the ambient space.

Step 2: Matvecs by QTT-Compressed Matrices

Let A have cores given by $G_{k}^{A}\left(\alpha_{k-1}, \overline{i_{k} j_{k}}, \alpha_{k}\right)$ and b have cores given by $G_{k}^{b}\left(\beta_{k-1}, j_{k}, \beta_{k}\right)$. Then $A b$ has cores given by

$$
G_{k}^{A b}\left(\overline{\alpha_{k-1} \beta_{k-1}}, i_{k}, \overline{\alpha_{k} \beta_{k}}\right)=\sum_{j_{k}} G_{k}^{A}\left(\alpha_{k-1} \overline{i_{k} j_{k}} \alpha_{k}\right) G_{k}^{b}\left(\beta_{k-1} j_{k} \beta_{k}\right) .
$$

$O\left(r_{A}^{2} r_{b}^{2} N \log N\right)$.
Well, that was easy.

Step 2, Shia Surprise: Matvecs with Uncompressed Vectors

Idea: Split b up along the target tree and use QTT cores to move it to the source tree.

Initialize: $y_{0}=b^{T}=y_{0}\left(\alpha_{0}, \overline{j_{1} j_{2} \cdots j_{d}}\right)$
Core iteration:

1. $M_{k}\left(\overline{\alpha_{k} i_{k}}, \overline{\alpha_{k-1} j_{k}}\right)=G_{k}^{A}\left(\alpha_{k-1}, \overline{i_{k} j_{k}}, \alpha_{k}\right)$
2. $b_{k}\left(\overline{\alpha_{k-1} j_{k}}, \overline{i_{1} \cdots i_{k-1} j_{k+1} \cdots j_{d}}\right)=y_{k-1}\left(\alpha_{k-1}, \overline{i_{1} \cdots i_{k-1} j_{k} \cdots j_{d}}\right)$
3. $\phi_{k}=M_{k} b_{k}$
4. $y_{k}\left(\alpha_{k}, \overline{i_{1} \cdots i_{k} j_{k+1} \cdots j_{d}}\right)=\phi_{k}\left(\overline{\alpha_{k} i_{k}}, \overline{i_{1} \cdots i_{k-1} j_{k+1} \cdots j_{d}}\right)$
$O\left(r_{A}^{2} N \log N\right)$.

Step 3: (Approximate) Inversion of QTTCompressed Matrices

Idea: Consider $A X=I$ and solve for X.
Useful identity: $\operatorname{vec}(A B C)=\left(C^{T} \otimes A\right) \operatorname{vec}(B) \Longrightarrow(I \otimes A) \operatorname{vec}(X)=\operatorname{vec}(I)$
Write X as a QTT, fix all cores but one, and solve for that core. Repeat for all cores.
Problem: can't change the ranks of X.
One possible solution (DMRG): solve for two cores at once, then split them up.

Reference

Corona, E., Rahimian, A., \& Zorin, D. (2017). A Tensor-Train accelerated solver for integral equations in complex geometries. Journal of Computational Physics, 334, 145-169. https://doi.org/10.1016/j.jcp.2016.12.051

