
CHAPTER 1
MIRROR DESCENT

Gradient descent algorithm works well for smooth convex optimization problems. However, it’s not
the best for specific classes of fucntions and bodies: for instance, for minimizing linear functions over
the probablity simplex. The general gradient descent algorithm does significantly worse than thte
specialized Hedge algorithm.

Another example is about the curse of dimension. In high dimensions, the dimension-free oracle
complexity is possible when the objective function f and the constrained set X are well-behaved in the
Euclidean norm. However, if this assumption is not met, then the gradient descent techniques may lose
their dimension-free convergence rates. For instance, if we consider a differnetiable convex function f
defined on the Euclidean ball s.t. �∇f�x��� � 1, �x � B2,n. This implies �∇f�x��2 �

�
n and thus

the projected gradient descent will converge to the minimum of f on B2,n at a rate of
�

n
t
. Known as

mirror descent, the rate could be improved to
�

logn
t
.

This suggests asking: can we somehow change gradient descent to adapt to the “geometry” of the
problem? This is the question that the Mirror Descent algorithm answers.

1.1 Mirror Descent: the Proximal Point View

We know the proximal gradient descent algorithm.

Algorithm 1.1: Proximal Gradient Descent Algorithm

1 x1 starting point ;
2 for t � 1, 2, . . . , T do
3 xt�1 � argminx η	∇ft�xt�, x
 � 1

2
�x� xt�2;

If we take the derivative, we can get the update rule:

η∇ft �xt� � xt�1 � xt � 0 � xt�1 � xt � η∇ft �xt� ,
which matches the normal gradient descent algorithm. The intuition also makes sense: if we want to
minimize the function ft, we could try to minimize its linear approximiation ft�x� � 	∇ft �xt� , x� xt

instead. But we should be careful not to ”over-fit”: the linear approximation is good only close to the
point xt. So we can add in a penalty term 1

2
�x� xt�2 to prevent the linear approximation from being

too far off. This means we should minimize:

xt�1 � argmin
x

�
ft �xt� � 	∇ft �xt� , x� xt
 � 1

2

∣
∣
∣
∣
x� xt�2

�
.

If we drop the terms that don’t depend on x,

xt�1 � argmin
x

�
	∇ft �xt� , x
 � 1

2
�x� xt�2

�
(1.1)
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If we have a constrained problem, we can change it to the following form:

xt�1 � argmin
x�K

�
η �∇ft �xt� , x� �

1

2
�x� xt�

2

�
(1.2)

Given this persepctive, we can now replace the squared Euclidean norm by other distances to get
different algorithms. A particularly useful class of distance functions are Bregman divergences, which
we now define and use.

1.1.1 Bregman divergence

Definition 1.1 (Bregman divergence).
Given a strictly convex function h, the Bregman divergence from x to y with respect to function h
is:

Dh�y�x� � h�y� � h�x� � �∇h�x�, y � x�.

Figure 1.1: Dh�y�x� for the function h : R 	 R

Example 1.2 (Examples of Bregman Divergence).
� For the function h�x� � 1

2
�x�2, the Bregman divergence is

Dh�y�x� �
1

2
�y�2 �

1

2
�x�2 � �x, y � x� �

1

2
�y � x�2.

� For the negative entropy function h�x� �
�n

i�1 �xi ln xi � xi�, the Bregman divergence is

Dh�y�x� �
n�

i�1

yi ln
yi
xi

� yi � xi.

Assuming that
�

i yi �
�

i xi � 1, we can simplify this to
�

i yi ln
yi
xi
, which is the KL diver-

gence.

Here are some properties of Bregman divergence.

Lemma 1.3 (Three-point property).
For x, y, z 
 dom�h�, we have

Dh�x�y� �Dh�z�x� �Dh�z�y� � �∇h�y� �∇h�x�, z � x�.



Lemma 1.4 (Pythagoras theorem).
Suppose that C is a convex set, x � C and y � R

d. Then,

Dh �x�ΠC�y�� �Dh �ΠC�y��y� � Dh�x�y�,

where
Πh

C�y� � argmin
x�C

Dh�x�y�.

Proof.
In terms of the definition of ΠC�y�, we have

�∇h �ΠC�y�� �∇h�y��T �ΠC�y� � x� � 0,

for any x � C.

1.1.2 Changing the distance function

We can replace 1
2
�x� y�2 in (1.1) with a generic Bregman divergence. Let’s consider the unconstrained

problem, then the update is:

xt�1 � argmin
x

	η 
∇ft �xt� , x� �Dh �x�xt�� .

Taking the derivative, we get

η∇ft �xt� �∇h �xt�1� �∇h �xt� � 0.

This gives us the update rule:

xt�1 � ∇h�1 �∇h �xt� � η∇ft �xt�� . (1.3)

Algorithm 1.2: Mirror Descent Algorithm

1 x1 starting point ;
2 for t � 1, 2, . . . , T do
3 xt�1 � argminx�K	η
∇ft�xt�, x� �Dh�x�xt�� ;

Example 1.5 (Examples of mirror descent).
� When h�x� � 1

2
�x�2, the gradient ∇h�x� � x, and the update rule becomes

xt�1 � xt � η∇ft �xt� ,

the standard gradient descent update.
� When h�x� �

�n
i�1 �xi ln xi � xi�, then ∇h�x� � �ln x1, . . . , ln xn�, and the update rule is

�xt�1�i � exp �ln �xt�i � η∇ft �xt�i� � �xt�i e
�η∇ft�xt�i .

This is exactly the update of the Hedge algorithm.

The same ideas also hold for constrained convex minimization: we now have to search for the
minimizer with the set K. In this case, the algorithm using negative entropy resultsin the same Hedge-
like update, following by scaling the point down to geta probability vector, thereby giving the probability
values in Hedge.



Note 1.6.
What would be the best choice of h to minimize the function f ? It would be h � ηf , because
adding Df �x�xt� to the linear approximation of f at xt gives us back f . Of course, the update now
requires us to minize f�x�, which is the origional problem. So we should coose an h that is similar
to f .

In summary, the algorithm tries to minimize the linear approximation of the function ft with respect
to the Bregman divergence. Depending on the choice of the Bregman divergence, we can get different
algorithms - this is the mirror descent framework.

1.2 Mirror Descent: The Mirror Map View

A different view of the mirror descent framework is the one originally presented by Nemirovsk and
Yudin. They observe that in gradient descent, at each step we set xt�1 � xt � ηft �xt�. However, the
gradient was actually defined as a linear functional on R

n and hence naturally belongs to
the dual space of Rn. The fact that we represent this functional as a vecotr is a matter of convenience.

Figure 1.2: The mirror map view of mirror descent

In the vanilla graident descent method, we were working in R
n endowed with �2-norm, and this

normed space is self-dual. But when working with other normed spaces, adding a covector ∇ft �xt� to
a vector xt might not be the right thing to do. Instead, Nemirovski and Yudin propose the following:

1. We map our current xt to a point θt in the dual space using a mirror map.
2. Next we take the gradient step θt�1 � θt � η∇ft �xt�.
3. We map θt�1 back to a point in the primal sapce x�t�1 using the inverse of the mirror map from

Step 1 .
4. If we are in the constrained case, this point x�t�1 might not be in the convex feasible region K, so

we project it to a close point xt�1 in K.

The name of the process comes from thinking of the dual space as being a mirror image of the
primal space.

1.2.1 Norms and their duals

We skip the definition of norms. Now we consider a Hilbert space.

Definition 1.7 (Dual norm).
Given a linear space C with norm � � �, the dual norm � � �� : C� � R is defined as:

�y�� � sup�	x, y
 � �x� � 1, x  C�.



Example 1.8 (Exampls of dual norms).
� Dual norm of �2-norm is itself.
� Dual norm of Euclidean norm is itself.
� Dual norm of �p-norm is �q-norm, where 1

p
� 1

q
� 1.

� Dual norm of �1-norm is ��-norm.

Theorem 1.9 (Cauchy-Schwarz for general norms).
Given x � C, y � C�, we have

�x, y� � �x��y��.

Theorem 1.10 (Self dual).
For a finite-dimensional space with norm � � �, we have

	� � ��
� � � � �.

1.2.2 Defining the mirror maps

Now we define the mirror maps bsaed on a compact subspace X of Rn.

Definition 1.11 (Mirror map).
Let D � R

n be a convex open set such that X is included in its closure, that is X � D, and
X �D  �. We say that h : D � R is a mirror map if it safisfies the following properties:

1. h is strictly convex and differentiable.
2. The gradient of h takes all possible values, that is ∇h	D
 � R

n.
3. The gradient of h diverges on the boundary of D, that is

lim
x��D

�∇h	x
� � ��.

In mirror descent the gradient of the mirror map h is used to map points from the “primal” to the
“dual” (note that all points lie in R

n so the notions of primal and dual spaces only have an intuitive
meaning). Precisely a point x � X �D is mapped to ∇h	x
, from which one takes a gradient step to get
to∇h	x
�η∇f	x
. Property (ii) then allows us to write the resulting point as∇h	y
 � ∇h	x
�η∇f	x

for some y � D. The primal point y may lie outside of the set of constraints X , in which case one has to
project back onto X . In mirror descent this projection is done via the Bregman divergence associated
to h.

Example 1.12 (Examples of mirror maps).
� h	x
 � 1

2
�x�22 is 1-strongly convex with respect to � � �2.

� h	x
 �
�n

i�1 xi	log xi � 1
 is 1-strongly convex with respect to � � �1.

Then we just repeat the Nemirovski-Yudin process.

1.3 Analysis

Now we focus on the mirror descent with constrained convex minimization. Let yt�1 � D such that

∇h	yt�1
 � ∇h	xt
 � η∇ft	xt
, (1.4)

and
xt�1 � Πh

X 	yt�1
 � argmin
x�X

Dh	x�yt�1
. (1.5)



Theorem 1.13 (Online mirror descent regret bound).
Let � � � be a norm on R

n and h be an α strongly convex function with respect to � � �. Given
f1, . . . , fT be convex differentiable functions, the mirror descent algorithm starting with x1 and
taking constant step size η in every iteraetion produces x1, . . . , xT such that for any x� � R

n,

T�
t�1

ft �xt� �
T�
t�1

ft �x
�� �

Dh �x
��x1�

η
�

η
�T

t�1 �∇ft �xt��
2
�

2α�������������������������������������������
regret

. (1.6)

Proof.
For any x � X �D, we have

ft�xt� 	 f�x�

� ∇ft�xt�
T �xt 	 x� Convexity of f



1

η
�∇h�xt� 	∇h�yt�1��

��xt 	 yt�1� By (1.4)



1

η

�
Dh�x�xt� �Dh�xt�yt�1� 	Dh�x�yt�1�

�
By Lemma 1.3

�
1

η

�
Dh�x�xt� �Dh�xt�yt�1� 	Dh�x�xt�1� 	Dh�xt�1�yt�1�

�
By Lemma 1.4.

The term Dh�x�xt� 	Dh�x�xt�1� will lead to a telescopic sum, and it remains to bound the other term
as follows:

Dh�xt�yt�1� 	Dh�xt�1�yt�1�


 h�xt 	 h�xt�1� 	∇h�yt�1�
��xt 	 xt�1�

� �∇h�xt� 	∇h�yt�1��
� �xt 	 xt�1� 	

α

2
�xt 	 xt�1�

2 By the strong convexity of h


 η∇ft�xt�
��xt 	 xt�1� 	

α

2
�xt 	 xt�1�

2 By (1.4)

� η�∇ft�xt��� � �xt 	 xt�1� 	
α

2
�xt 	 xt�1�

2 Cauchy-Schwarz

�
η2�∇ft�xt��

2
�

2α
. By completing the square

Now we have proved that:

T�
t�1

�ft�xt� 	 f�x�� �
Dh �x�x1�

η
� η

�∇ft�xt��
2
�T

2α
.

This is equivalent to (1.6).

Theorem 1.14 (Offline mirror descent regret bound).
Let h be a mirror map which is α-strongly convex on X�D w.r.t. ���. Let R2 
 supx�X�D Dh�x�x1�,

and f be convex and L-Lipschitz w.r.t. � � �. Then the mirror descent with η 
 R
L

	
2α
T

satisfies

f



1

T

T�
t�1

xt

�
	 f �x�� � RL

�
2

αT
.

Proof sketch.

Apply Theorem 1.13 with η 
 R
L

	
2α
T
.



Note 1.15.
The MD convergence rate O�1��t� is slow. However, this is the best possible rate one can expect
when solving nonsmooth large-scale convex problems represented by FO oracles, or any other
oracles providing local information.

In fact, we have the following bad news.

Example 1.16 (Lower bound example).
Consider convex minimization problem

x� � argmin
�x��R

f�x�, (P)

where � � � is either the norm � � �p on R
n or the nuclear norm on R

n�n. Let f� � min�x��R f�x�
and

F�L� � �f : Rn 	 R 
 f is L-Lipschitz w.r.t. � � ��,
and asumme that when solving (P), we have access to an first order oracle. Then for any t � n
and t-step algorithm B that solves (P) with an FO oracle, we have

sup
f�F�L�

�
�fxβ�f��  f�

�
� 0.01

LR�
t
.

Here xβ�f� is the output of B on the function f .


