
Math 54: Worksheet Solution

April 18

(1) Find the general solution of

y′′(t) + y(t) = t cos(t).

Solution: The homogeneous equation has general solution y(t) = C1 sin(t)+C2 cos(t). Our
recipe for guessing a particular solution (method of undetermined coefficients) tells us to
guess

yp(t) = t [a0 + a1t] cos(t) + t [b0 + b1t] sin(t).

The rest of the details are omitted.

(2) True or false: the set of solutions of the ODE in the last problem is a vector space.

Solution: False, because the ODE is inhomogeneous (so the sum of two solutions is no
longer a solution).

(3) Consider the differential equation:

y′′(t) + y(t) = 0.

Derive an equivalent linear system of differential equations in normal form, i.e., in the form
x′(t) = A(t)x(t) + f(t).

Solution: Let x1(t) = y(t), x2(t) = x′

1(t) = y′(t). Then we have:

x′

1(t) = x2(t)

x′

2(t) = y′′(t) = −y(t) = −x1(t),

i.e.,

x
′(t) =

(

0 1
−1 0

)

x(t),

where x(t) =

(

x1(t)
x2(t)

)

.

(4) Consider the system of differential equations:
{

y′′1 (t) + ty′1(t)− y2(t) = et

y′2(t) + cos(t)y1(t) = 0

Derive an equivalent linear system of differential equations in normal form.

Solution: Let x1(t) = y1(t), x2(t) = x′

1(t) = y′1(t), x3(t) = y2(t). Then we have:

x′

1(t) = x2(t)

x′

2(t) = y′′1 (t) = −ty′1(t) + y2(t) + et = −tx2(t) + x3(t) + et

x′

3(t) = y′2(t) = − cos(t)y1(t) = − cos(t)x1(t),

i.e.,

x
′(t) =

⎛

⎝

0 1 0
0 −t 1

− cos(t) 0 0

⎞

⎠x(t) +

⎛

⎝

0
et

0

⎞

⎠ ,

1



2

where x(t) =

⎛

⎝

x1(t)
x2(t)
x3(t)

⎞

⎠.

(5) Recall that for Rn-valued functions x1, . . . ,xn, the Wronskian of {x1, . . . ,xn} is the R-valued
function W [x1, . . . ,xn](t) = det (x1(t) · · · xn(t)).

Suppose that x1, . . . ,xn are solutions of x′(t) = A(t)x(t) on some open interval I. Then
which of the following are possible: (1) the Wronskian is zero on all of I, (2) the Wronskian
is never zero on I, (3) the Wronskian takes both zero and nonzero values on I.

In each case, what can we conclude about the linear independence or linear dependence
of {x1, . . . ,xn}?

Solution: Only cases (1) and (2) are possible. In the first case, we have linear depen-
dence. In the second case, we have linear independence.

(6) Compute the Wronskian W [x1,x2] determined by

x1(t) =

(

sin(t)
cos(t)

)

, x2(t) =

(

− cos(t)
sin(t)

)

.

x1 and x2 happen to be solutions of a system of ODEs x′(t) = Ax(t). Can you figure out
what A must be?

Now consider

x1(t) =

(

sin(t)
cos(t)

)

, x2(t) =

(

cos(t)
sin(t)

)

.

Is it possible that x1 and x2 are solutions of some system x′(t) = Ax(t)? How about
x′(t) = A(t)x(t)? How could this be determined from the Wronskian?

Solution: For the first part, the Wronskian is given by W [x1,x2](t) = sin2(t)+cos2(t) = 1.
To figure out A, notice that

x
′

1(t) =

(

cos(t)
− sin(t)

)

=

(

0 1
−1 0

)

x1(t),

so take A =

(

0 1
−1 0

)

. You can check that x1 and x2 both solve x′(t) = Ax(t).

For the second part, compute W [x1,x2](t) = sin2(t) − cos2(t). This function is zero at
some points but not all points. Therefore x1 and x2 cannot be solutions of some homoge-
neous linear system of differential equations (see last problem).

(7) Suppose that x : I → Rn solves x′(t) = Ax(t), and moreover suppose that we can diagonal-
ize A = PDP−1. Define a new function z : I → Rn by z(t) = P−1x(t). Verify that z solves
z′(t) = Dz(t). What is so great about this observation?

Solution: Compute

z
′(t) =

[

P−1
x
]′

(t) = P−1
x
′(t) = P−1Ax(t) = P−1PDP−1

x(t) = DP−1
x(t) = Dz(t),

so we have confirmed that z′(t) = Dz(t). Since D is diagonal, let λ1, . . . ,λn be its diagonal
entries. Then z′(t) = Dz(t) simply means that z′1(t) = λ1z1(t), . . . , z′n(t) = λnzn(t). Each of
these equations can be solved easily on its own (they are not coupled to each other). Then
once we know z(t), we can determine x(t) via the relation z(t) = Px(t).


