## Math 54: Worksheet Solution

April 18
(1) Find the general solution of

$$
y^{\prime \prime}(t)+y(t)=t \cos (t)
$$

Solution: The homogeneous equation has general solution $y(t)=C_{1} \sin (t)+C_{2} \cos (t)$. Our recipe for guessing a particular solution (method of undetermined coefficients) tells us to guess

$$
y_{p}(t)=t\left[a_{0}+a_{1} t\right] \cos (t)+t\left[b_{0}+b_{1} t\right] \sin (t)
$$

The rest of the details are omitted.
(2) True or false: the set of solutions of the ODE in the last problem is a vector space.

Solution: False, because the ODE is inhomogeneous (so the sum of two solutions is no longer a solution).
(3) Consider the differential equation:

$$
y^{\prime \prime}(t)+y(t)=0
$$

Derive an equivalent linear system of differential equations in normal form, i.e., in the form $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{f}(t)$.

Solution: Let $x_{1}(t)=y(t), x_{2}(t)=x_{1}^{\prime}(t)=y^{\prime}(t)$. Then we have:

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =y^{\prime \prime}(t)=-y(t)=-x_{1}(t)
\end{aligned}
$$

i.e.,

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{x}(t)
$$

where $\mathbf{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}$.
(4) Consider the system of differential equations:

$$
\left\{\begin{array}{l}
y_{1}^{\prime \prime}(t)+t y_{1}^{\prime}(t)-y_{2}(t)=e^{t} \\
y_{2}^{\prime}(t)+\cos (t) y_{1}(t)=0
\end{array}\right.
$$

Derive an equivalent linear system of differential equations in normal form.
Solution: Let $x_{1}(t)=y_{1}(t), x_{2}(t)=x_{1}^{\prime}(t)=y_{1}^{\prime}(t), x_{3}(t)=y_{2}(t)$. Then we have:

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & =y_{1}^{\prime \prime}(t)=-t y_{1}^{\prime}(t)+y_{2}(t)+e^{t}=-t x_{2}(t)+x_{3}(t)+e^{t} \\
x_{3}^{\prime}(t) & =y_{2}^{\prime}(t)=-\cos (t) y_{1}(t)=-\cos (t) x_{1}(t)
\end{aligned}
$$

i.e.,

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -t & 1 \\
-\cos (t) & 0 & 0
\end{array}\right) \mathbf{x}(t)+\left(\begin{array}{c}
0 \\
e^{t} \\
0
\end{array}\right)
$$

where $\mathbf{x}(t)=\left(\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$.
(5) Recall that for $\mathbb{R}^{n}$-valued functions $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, the Wronskian of $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is the $\mathbb{R}$-valued function $W\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right](t)=\operatorname{det}\left(\mathbf{x}_{1}(t) \cdots \mathbf{x}_{n}(t)\right)$.

Suppose that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are solutions of $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$ on some open interval $I$. Then which of the following are possible: (1) the Wronskian is zero on all of $I,(2)$ the Wronskian is never zero on $I,(3)$ the Wronskian takes both zero and nonzero values on $I$.

In each case, what can we conclude about the linear independence or linear dependence of $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ ?

Solution: Only cases (1) and (2) are possible. In the first case, we have linear dependence. In the second case, we have linear independence.
(6) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]$ determined by

$$
\mathbf{x}_{1}(t)=\binom{\sin (t)}{\cos (t)}, \quad \mathbf{x}_{2}(t)=\binom{-\cos (t)}{\sin (t)}
$$

$\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ happen to be solutions of a system of $\operatorname{ODEs} \mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. Can you figure out what $A$ must be?

Now consider

$$
\mathbf{x}_{1}(t)=\binom{\sin (t)}{\cos (t)}, \quad \mathbf{x}_{2}(t)=\binom{\cos (t)}{\sin (t)}
$$

Is it possible that $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are solutions of some system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ ? How about $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$ ? How could this be determined from the Wronskian?

Solution: For the first part, the Wronskian is given by $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\sin ^{2}(t)+\cos ^{2}(t)=1$. To figure out $A$, notice that

$$
\mathbf{x}_{1}^{\prime}(t)=\binom{\cos (t)}{-\sin (t)}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{x}_{1}(t)
$$

so take $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. You can check that $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ both solve $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
For the second part, compute $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\sin ^{2}(t)-\cos ^{2}(t)$. This function is zero at some points but not all points. Therefore $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ cannot be solutions of some homogeneous linear system of differential equations (see last problem).
(7) Suppose that $\mathbf{x}: I \rightarrow \mathbb{R}^{n}$ solves $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, and moreover suppose that we can diagonalize $A=P D P^{-1}$. Define a new function $\mathbf{z}: I \rightarrow \mathbb{R}^{n}$ by $\mathbf{z}(t)=P^{-1} \mathbf{x}(t)$. Verify that $\mathbf{z}$ solves $\mathbf{z}^{\prime}(t)=D \mathbf{z}(t)$. What is so great about this observation?

Solution: Compute
$\mathbf{z}^{\prime}(t)=\left[P^{-1} \mathbf{x}\right]^{\prime}(t)=P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t)=P^{-1} P D P^{-1} \mathbf{x}(t)=D P^{-1} \mathbf{x}(t)=D \mathbf{z}(t)$,
so we have confirmed that $\mathbf{z}^{\prime}(t)=D \mathbf{z}(t)$. Since $D$ is diagonal, let $\lambda_{1}, \ldots, \lambda_{n}$ be its diagonal entries. Then $\mathbf{z}^{\prime}(t)=D \mathbf{z}(t)$ simply means that $z_{1}^{\prime}(t)=\lambda_{1} z_{1}(t), \ldots, z_{n}^{\prime}(t)=\lambda_{n} z_{n}(t)$. Each of these equations can be solved easily on its own (they are not coupled to each other). Then once we know $\mathbf{z}(t)$, we can determine $\mathbf{x}(t)$ via the relation $\mathbf{z}(t)=P \mathbf{x}(t)$.

