Math 53: Quiz #9 April 18 GSI: M. Lindsey 20 points, 25 minutes

Name: _____

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using. Points may be deducted for poor exposition.

Problem 1

(10 points.) Let $\mathbf{F}(x, y) = \langle 2x + y^2, x^3 + y^2 \rangle$. Let *C* be the unit circle (positively oriented). Compute the flux of \mathbf{F} across *C*, i.e., the quantity $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$.

(See back for next problem!)

Problem 2

(10 points.) Let S be the part of the graph of $z = (x - 1)^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 1$. Give S the upward orientation (so think of the normal vectors to S as pointing upward). Let $\mathbf{F}(x, y, z) = \langle 0, 0, z \rangle$. Calculate the flux of \mathbf{F} across S, i.e., the quantity $\iint_S \mathbf{F} \cdot d\mathbf{S}$, or equivalently $\iint_S \mathbf{F} \cdot \mathbf{n} dS$.