Math 53: Quiz \#9

April 18
GSI: M. Lindsey
20 points, 25 minutes

Name:

\qquad

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using. Points may be deducted for poor exposition.

Problem 1

(10 points.) Let $\mathbf{F}(x, y)=\left\langle 2 x+y^{2}, x^{3}+y^{2}\right\rangle$. Let C be the unit circle (positively oriented). Compute the flux of \mathbf{F} across C, i.e., the quantity $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$.
(See back for next problem!)

Problem 2

(10 points.) Let S be the part of the graph of $z=(x-1)^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=1$. Give S the upward orientation (so think of the normal vectors to S as pointing upward). Let $\mathbf{F}(x, y, z)=\langle 0,0, z\rangle$. Calculate the flux of \mathbf{F} $\operatorname{across} S$, i.e., the quantity $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, or equivalently $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.

