Math 53: Quiz \#3

February 22
GSI: M. Lindsey
20 points, 20 minutes

Name: \qquad

Please give neat and organized answers. Whenever applicable (especially for computational questions), make it clear what strategy you are using. Points may be deducted for poor exposition.

Problem 1

(10 points.) Consider a function $f(x, y)$ of two variables, and fix a point $\left(x_{0}, y_{0}\right)$.
(a) Write down a formula for the function $f_{\text {lin }}$ that linearly approximates f about the point $\left(x_{0}, y_{0}\right)$. (This formula should involve the partial derivatives of f.)
(b) The graph of $z=f_{\operatorname{lin}}(x, y)$ is a plane in three-dimensional space. Using your formula from part (a), find a normal vector to this plane.
(c) Recall that the plane from part (b) is the tangent plane to the graph of f at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. Suppose that the tangent planes to the graph of f at ALL points $\left(x_{0}, y_{0}\right)$ are parallel and that $f(0,0)=5, \frac{\partial f}{\partial x}(0,1)=\frac{\partial f}{\partial y}(1,0)=0$. Based on part (b), write down an explicit formula for $f(x, y)$.

Problem 2

(10 points.) If $z=f(x, y)$ where $x=r+s^{3}$ and $y=e^{r s}$, find $\frac{\partial^{2} z}{\partial r \partial s}$. (Your answer should be expressed in terms of r, s, and partial derivatives of z with respect to x and y.)

