
Math 228A: Lecture notes

Numerical solution of (extra)ordinary differential equations

Fall 2023

M. Lindsey

Latest update: August 28

Contents

I Introduction 6

1 Systems of ODEs 6
1.1 Reduction to autonomous case . 6
1.2 Reduction to first-order case . 7

2 Existence and uniqueness: Picard iteration 7
2.1 Banach fixed point theorem . 9
2.2 Picard-Lindelöf theorem . 10

3 Discretization 11

4 Euler’s method 12
4.1 Explicit Euler . 12
4.2 Error estimation and Richardson extrapolation 15
4.3 Implicit Euler . 16

5 Taylor series methods 17

II Linear multistep methods 21

6 Local truncation error and consistency 22
6.1 One-step methods . 22

6.1.1 Explicit Euler . 22
6.1.2 Implicit Euler . 23
6.1.3 Trapezoidal rule . 23

6.2 Consistency . 23
6.3 Starting values . 24

1

7 Families of LMMs 25
7.1 Integral-based methods . 25

7.1.1 Adams-Bashforth methods . 25
7.1.2 Adams-Moulton methods . 27
7.1.3 Nyström methods . 27
7.1.4 Milne-Simpson methods . 28

7.2 Backward differentiation formulas . 28

8 Solving implicit methods 30
8.1 Fixed-point / Picard iteration . 31

8.1.1 Globally Lipschitz case . 31
8.1.2 General case . 31

8.2 Newton’s method . 32
8.3 Anderson acceleration / DIIS . 36

9 Zero-stability 38
9.1 Difference equations . 38
9.2 Root condition . 40
9.3 Examples . 41

9.3.1 Silly example . 41
9.3.2 Adams-type methods . 41
9.3.3 Nyström-type methods . 41
9.3.4 Backward differentiation formulas . 41

9.4 Dahlquist’s first barrier theorem . 42

10 Convergence theorem 42
10.1 The step map . 43
10.2 Warm-up: inhomogeneous linear difference equation 44
10.3 Getting warmer: linear case . 45
10.4 Lipschitz case . 47

11 Milne’s device and predictor-corrector methods 51
11.1 Milne’s device . 51
11.2 Predictor-corrector methods . 52

12 Stiff systems and absolute stability 53
12.1 Linear systems of ODEs . 53
12.2 Absolute stability . 54
12.3 Computing arbitrary absolute stability regions 55
12.4 A-stability . 56
12.5 A0-stability . 57
12.6 Absolute stability and linear systems of ODEs 57
12.7 Stiff systems . 58

2

III Runge-Kutta methods 59

13 The general RK method 59
13.1 The Runge-Kutta iteration map . 59
13.2 Sum rule . 60
13.3 Explicit RK methods . 60
13.4 Local truncation error, consistency, and convergence 60
13.5 Simple example: modified Euler . 61

14 Designing higher-order explicit schemes 62
14.1 One-stage methods . 62
14.2 Two-stage methods . 62
14.3 Three-stage methods . 63
14.4 Beyond third order . 64
14.5 Attainable order? . 65

15 Absolute stability 67
15.1 The stability function . 67
15.2 Deriving the stability polynomial . 68
15.3 Digression on the order of accuracy . 71
15.4 Absolute stability regions . 72
15.5 Implicit stability functions . 73

16 Runge-Kutta-Chebyshev methods 74

17 Collocation methods 76
17.1 Basic motivation . 76
17.2 Defining equations for the slopes . 77
17.3 Defining the weights, given the nodes . 78
17.4 Digression on solving implicit methods . 79
17.5 Summary up to determining the nodes . 79

17.5.1 Proof of order of accuracy: autonomous linear case 81
17.5.2 Proof of order of accuracy: non-autonomous linear case 82
17.5.3 Sketch in general case . 82

17.6 Gauss-Legendre methods . 82

IV Geometric numerical integration 84

18 Monotone systems 84
18.1 Algebraic stability . 86
18.2 Alegbraic stability of Gauss-Legendre methods 88

3

19 Quadratic invariants 90
19.1 The M matrix returns! . 91
19.2 Unitary flows . 93

20 Hamiltonian systems 93
20.1 Separable Hamiltonians . 94
20.2 Energy conservation . 94
20.3 Symplectic structure . 95
20.4 Partitioned Runge-Kutta methods for separable Hamiltonian systems 96

20.4.1 General partitioned RK methods . 97
20.4.2 Consistency conditions . 97
20.4.3 Symplecticity . 98
20.4.4 Separable Hamiltonian case . 98
20.4.5 Symplectic Euler . 99
20.4.6 Störmer-Verlet . 99

V Stochastic differential equations and Monte Carlo sampling 101

21 Understanding the SDE 101

22 What is the goal? 102

23 Infinitesimal generator 102

24 Fokker-Planck equation 103
24.1 Overdamped Langevin dynamics . 105

25 How to construct higher-order schemes 106
25.1 Suzuki-Trotter expansion of the Fokker-Planck equation 107
25.2 Euler-Maruyama revisited . 108
25.3 A higher-order example . 108

26 Markov chain Monte Carlo sampling 108
26.1 Metropolization . 109
26.2 Overdamped Langevin as MCMC and MALA 110
26.3 Hamiltonian Monte Carlo . 110

Appendices 112

A Lagrange interpolation 112
A.1 Construction and uniqueness . 112
A.2 Error bound . 113

4

B Chebyshev polynomials 114

C Orthogonal polynomials and Gauss quadrature 116
C.1 Orthogonal polynomials . 116
C.2 Three-term recurrence . 117
C.3 Zeros of orthogonal polynomials . 117
C.4 Gauss quadrature . 118

5

Newton has shown that a law is only a
necessary relation between the present
state of the world and its immediately
subsequent state. All the laws
discovered since are nothing else; they
are in sum, differential equations.

H. Poincaré

Part I

Introduction
1 Systems of ODEs

A general system of ordinary differential equations (ODE) can be written
(

x0(t) = f(x(t), t),

x(0) = x0,
(1.1)

whose solution is a continuous function x : [0, T]! Rd that satisfies the first equation for all
times t in the interval (0, T), together with x(0) = x0, where x0 is a given initial condition.
The state x(t) at time t is a vector that lives in Rd. (More generally we can consider a
nonzero initial time.)

We can alternatively use the Newton dot notation dx

dt
(t) = ẋ(t) for the time derivative.

For the p-th order derivative we can write d
p
x

dtp
(t) = x(p)(t).

1.1 Reduction to autonomous case

In (1.1), f : Rd ⇥ R! Rd is a function of state and time. If in fact f(x, t) = g(x) for some
g, i.e., f does not depend directly on time, then we can write (1.1) as

x0(t) = g(x(t)).

In this case, the ODE is autonomous, otherwise non-autonomous.

In fact we can always reduce to the autonomous case by adding one dimension to the
state variable! To see this, let y 2 Rd+1 be an augmented state variable. y1:d will correspond
to the original state x and yd+1 will be an extra variable which simply tracks the progress
of time. Then define a function g : Rd+1 ! Rd by

g(y) = f(y1:d, yd+1)

and consider the system 8
>><

>>:

y0(t) =

✓
g(y)
1

◆
,

y(0) =

✓
x0

0

◆
.

6

Since the last variable solves yd+1(0) = 0, y0
d+1(t) = 1 for all t, we must have yd+1(t) = t,

and we can recover a solution x(t) of the original system via x(t) = y1:d(t).

1.2 Reduction to first-order case

What about higher-order time derivatives? More generally we could consider a system of
the form

x(p)(t) = F (x(t), x0(t), x00(t), . . . , x(p�1)(t), t).

For such a system we need initial conditions for each derivative of order less than equation:

x(0) = x0, x0(0) = x(1)
0 , . . . , x(p�1)(0) = x(p�1)

0 .

Actually this can be reduced to the form (1.1).

We will consider the augmented variable y 2 Rpd corresponding to the stack of variables

y(t) =

0

BBB@

x(t)
x0(t)

...
x(p�1)(t)

1

CCCA
.

Correspondingly consider the stacked initial condition

y0 =

0

BBB@

x0

x(1)
0
...

x(p�1)
0

1

CCCA
,

and define

f(y, t) =

0

BBBBB@

yd+1:2d

y2d+1:3d
...

y(p�1)d+1:pd

F (y1:d, yd+1:2d, . . . , y(p�1)d+1:pd, t)

1

CCCCCA
.

Then our solution can be recovered by solving
(

y0(t) = f(y(t), t),

y(0) = y0.

2 Existence and uniqueness: Picard iteration

When does there exist a unique solution to (1.1)? There is a standard sufficient condition.
The proof by Picard iteration is standard issue mathematics that you must know, and it
conveys something important about life.

Suppose for a moment that we wanted to solve instead
(

x0(t) = h(t),

x(0) = x0,
(2.1)

7

Figure 2.1: “Someone once told me that time was a predator that stalked us all our lives.
But I rather believe that time is a companion who goes with us on the journey and reminds
us to cherish every moment...because they’ll never come again.” Oops, wrong Picard!

where h is some known function. This is easy! The fundamental theorem of calculus
guarantees (under mild integrability conditions on h) the existence of a unique solution as

x(t) = x0 +

Z
t

0
h(s) dx. (2.2)

Now suppose we already knew the solution x(t). Then we could define

h(t) := f(x(t), t) (2.3)

and recover x(t) again as the solution of (2.1). Of course this is not yet a very practical in-
sight because it requires us to already know the solution x(t) in order to furnish the solution
once again as a solution of (2.1). But it suggests the important insight that the difficulty of
solving a general ODE is self-consistency, i.e., finding a (or the?) function x : [0, T] ! Rd,
which maps to a function h : [0, T] ! Rd via (2.3), which in turn maps back to the same
function x via (2.2).

Define � to be the composition of the maps (2.3) and (2.2), so � is a map x 7! �[x]
from functions to functions defined by

�[x](t) = x0 +

Z
t

0
f(x(s), s) dx. (2.4)

The self-consistency discussion is precisely saying that we are looking for fixed points of this
map, i.e., x such that �[x] = x.

In order to proceed we need to be a bit more rigorous and define the domain of �, which
is going to be a function space.

Definition 1. Let C([0, T];Rd) denote the space of continuous functions [0, T] ! Rd. Let
k · k1 denote the uniform (or sup) norm on C([0, T];Rd), defined by

kgk1 = sup {|g(t)| : t 2 [0, T]} .

Here | · | denotes the Euclidean norm on Rd, which will be our convention throughout.

Remark 2. Recall that C([0, T];Rd) is a Banach space with respect to the uniform norm,
i.e., it is a complete metric space with respect to the metric d(g, h) = kg � hk1.

8

2.1 Banach fixed point theorem

The key theorem for proving the existence of fixed points is the Banach fixed point theorem.
Note that the proof is constructive via an iterative scheme, which even comes with a rate
of convergence.

Theorem 3 (Banach fixed point). Let X denote a complete metric space with metric d.
Suppose that � : X ! X is a contraction map, i.e., there exists ↵ 2 [0, 1) such that

d(�(x),�(y)) ↵ d(x, y)

for all x, y 2 X. Then there exists a unique fixed point for the map �, i.e., a unique x?

such that �(x?) = x?. Moreover, for any x 2 X, if we define the sequence {xk}1k=0 via
x0 = x and xk = �(xk�1) for all k � 1, then limk!1 xk = x?. In other words, the result of
repeated application of � converges to x? for arbitrary initial input.

Remark 4. In fact, the proof recovers a convergence rate for the limit xk ! x?. To wit, we
have d(xk, x?) = O(↵k).

Proof. First we show existence. Let x0 2 X be arbitrary. Then define successively xk =
�(xk�1) for k = 1, 2, We claim that the sequence {xk} converges. Since X is complete,
it suffices to show that the sequence is Cauchy. Let " > 0. We want to show that there
exists K sufficiently large such that for any l > k � K we have d(xk, xl) ". Note that if
l � k � K, then

d(xk, xl)
l�1X

i=k

d(xi, xi+1)

by the triangle inequality. Moreover, for any i, by the contraction property we have that

d(xi, xi+1) ↵ d(xi�1, xi) · · · ↵i d(x0, x1).

Therefore

d(xk, xl)
l�1X

i=k

↵id(x0, x1) ↵kd(x0, x1)
l�k�1X

i=0

↵i ↵k

1� ↵d(x0, x1)
↵K

1� ↵d(x0, x1).

The Cauchy claim evidently follows by taking K sufficiently large.
It follows direclty from the definition of continuity that a contraction map is continuous.

Now let x? be the limit of {xk}. Then taking the limit of both sides of xk = �(xk�1), we
have by continuity that x? = �(x?), i.e., the limit point is a fixed point as desired. This
establishes existence.

Now suppose there are two fixed points x and x0. We want to show that x = x0, from
which uniqueness follows. Note that

d(x, x0) = d(�(x),�(x0)) ↵ d(x, x0),

which can only hold if d(x, x0) = 0, i.e., x = x0. This completes the proof of uniqueness.
The final part of the statement of the theorem follows from uniqueness together with

the fact that x0 was arbitrary in the existence proof. To see the convergence rate claimed
in the remark, take the limit as l ! 1 of the inequality d(xk, xl) ↵

k

1�↵
d(x0, x1) proved

above.

9

2.2 Picard-Lindelöf theorem

The key sufficient condition establishing existence and uniqueness of solutions of (1.1) is
phrased in terms of Lipschitz functions.

Definition 5. A function f : Rn ! R is Lipschitz (or Lipschitz continuous) if there exists
L � 0 such that |f(u) � f(v)| L|u � v| for all u, v 2 Rn. In this case we can say more
specifically that f is L-Lipschitz, and L is a Lipschitz constant. (Here | · | denotes the
Euclidean norm as always.)

Theorem 6 (Picard-Lindelöf). Suppose that f is Lipschitz. Then the system (1.1), i.e.,
(

x0(t) = f(x(t), t),

x(0) = x0,

admits a unique solution on [0, T] for any T > 0.

Proof. Suppose that f is L-Lipschitz where L > 0. We want to claim that � as defined in
(2.4) is a contraction map with respect to the uniform norm on C([0, T];Rd), but it is not
quite true. Indeed, we can compute that:

k�[x]� �[y]k1 = sup
t2[0,T]

⇢����
Z

t

0
f(x(s), s)� f(y(s), s) dx

����

�

 sup
t2[0,T]

⇢Z
t

0
|f(x(s), s)� f(y(s), s)| dx

�

 sup
t2[0,T]

⇢
L

Z
t

0
|x(s)� y(s)| dx

�

 sup
t2[0,T]

⇢
L

Z
t

0
kx� yk1 dx

�

 LTkx� yk1.

If we had LT < 1, then we would have a contraction map. Unfortunately this cannot be
guaranteed a priori.

We sidestep the difficulty in the following way. Let h = T/N , where N is sufficiently
large such that Lh < 1, and consider dividing the interval [0, T] into the N subintervals

I0 := [0, h], I1 := [h, 2h], . . . , IN�1 := [(N � 1)h, T].

We are going to construct a solution for (1.1) on each of these intervals individually and
then argue that together they constitute a solution on [0, T].

Indeed let us first define �0 : C(I0;Rd)! C(I0;Rd) via

�0[y](t) = x0 +

Z
h

0
f(y(s), s) ds.

Our preceding calculation ensures that �0 is a contraction mapping, hence admits a unique
fixed point in C(I0;Rd), which is therefore the unique solution of (1.1) on I0. As this solution
is continuous up to the boundary of [0, h], the final state x1 := x(h) is well-defined.

Then we can consider x1 as the initial condition of (1.1) on the interval [h, 2h]. By
shifting the time variable appropriately, the same argument suggests that we can extend x

10

continuously to the interval [0, 2h] such that x solves (1.1) on both [0, h] and [h, 2h], and we
define x2 := x(2h).

More concretely, given the preceding final state xn, we inductively define �n : C(In;Rd)!
C(In;Rd) via

�n[y](t) = xn +

Z
t

nh

f(y(s), s) ds.

This is a contraction mapping, and we can extend x continuously to [0, (n+1)h] by appending
its unique fixed point. Then we define xn+1 = x((n + 1)h) to complete the inductive
procedure.

In summary the construction yields x 2 C([0, T];Rd) with xn = x(nh), solving (1.1) on
each of the individual subintervals In, n = 0, . . . , N �1 in the sense that the restriction x|In
is the unique fixed point of �n for each n. Note that we do not yet know that x actually
solves (1.1) on [0, T], since we have not established that x0(t) = f(x(t), t) is satisfied at the
subinterval boundaries h, 2h, . . . , (N � 1)h. We will do so somewhat indirectly.

Let � once again denote the original map C([0, T];Rd)! C([0, T];Rd) as in (2.4). Then
let t 2 [0, T], and let m be the value of n such that t 2 In, defaulting to the smaller value
in the case of boundary points.

�[x](t) = x0 +

Z
t

0
f(x(s), s) dx

= x0 +

Z
t

mh

f(x(s), s) ds+
m�1X

n=0

Z (n+1)h

nh

f(x(s), s) ds

= x0 +

Z
t

mh

f(x(s), s) ds+
m�1X

n=0

 "
xn +

Z (n+1)h

nh

f(x(s), s) ds

#
� xn

!

(?)
= x0 +

Z
t

mh

f(x(s), s) ds+
m�1X

n=0

[xn+1 � xn]

= xm +

Z
t

mh

f(x(s), s) ds,

where in (?) we have used the fact that x|In is the fixed point of of �n for n = 0, . . . ,m� 1
and in the last step have simplified the telescoping sum. But note that the final expression
is precisely �m[x|Im](t), which is equal to x(t) by the fact that x|Im is the fixed point of
�m. Therefore �[x](t) = x(t), and our candidate x 2 C([0, T];Rd) is in fact a fixed point of
�, hence a solution of (1.1) on [0, T].

To see uniqueness, suppose that there is another solution y of (1.1) on [0, T]. By the
uniqueness of the solution on [0, h], we know that y must agree with x on [0, h]. Then by
uniqueness of the solution on [h, 2h], since x and y have the same intial condition on this
interval, we know that x and y in fact agree on [0, 2h], etc. It follows that x and y coincide
on all of [0, T]. This completes the proof.

Remark 7. Note that the most famous counterexample to global-in-time existence, the scalar
equation x0(t) = x(t)2, does not satisfy the Lipschitz condition. Solutions of this ODE blow
up in finite time, as can be checked by direct solution via separation of variables.

3 Discretization

Unfortunately (1.1) can rarely be solved in closed form. (But when closed-form solutions
exist, they’re as good as gold!) The main point of this class is to obtain approximate

11

solutions in the generic unforunate case.
An approximate solution is represented via discretization. We will consider a step size

h = T/N and discrete times 0, h, 2h, . . . , Nh. We will represent the solution x : [0, T]! Rd

by its values xn as these discrete times tn := nh for n = 0, . . . , N . When N is not fixed, we
use the notations x(N)

n and t(N)
n to disambiguate if the meaning is not clear from context.

A numerical scheme is a tractable computational recipe furnishing a collection of states
x(N)
0:N = (x(N)

0 , . . . , x(N)
N

) that approximate the true solution states (x(0), . . . , x(Nh)) at our
discrete times, i.e., achieving x(N)

n ⇡ x(nh). Ideally we can control the approximation error,
and to have much regard for a scheme at all, it must be the case that the error can be made
arbitrarily small by advancing to the limit N !1, in the sense that

lim
N!1

max
n=0,...,N

|x(N)
n
� x(nh)| = 0.

In this case we say that the scheme is convergent .

4 Euler’s method

Recall the system (1.1), which we reproduce here for convenience
(

x0(t) = f(x(t), t),

x(0) = x0.
(4.1)

The simplest approach to solving it is Euler’s method. It is not such a bad old method (and
it is in particular convergent), but a large part of the course can be viewed as exploring the
ways in which it is not really adequate for all purposes.

4.1 Explicit Euler

Consider the difference quotient approximation of the derivative

x0(tn) ⇡
x(tn+1)� x(tn)

h
.

The first line of (4.1), evaluated at the time t = tn, then suggests

x(tn+1)� x(tn)

h
⇡ f(x(tn), tn), (4.2)

or
x(tn+1) ⇡ x(tn) + hf(x(tn), tn).

This suggests that we adopt the equation for our discrete approximation

xn+1 = xn + hf(xn, tn), n = 0, . . . , N � 1, (4.3)

which defines Euler’s method . (We may alternatively call this the explicit Euler method ,
by contrast with implicit Euler to be defined later.) Note that xn determines xn+1 uniquely,
hence there is a unique solution vector x(N) solving (4.3).

For concision we will denote
fn := f(xn, tn),

in which case Euler’s method reads as

xn+1 = xn + hfn, n = 0, . . . , N � 1. (4.4)

12

Theorem 8. Let f be Lipschitz continuous. Then Euler’s method is convergent, and more-
over maxn=0,...,N |x(N)

n � x(nh)| = O(h) = O(N�1).

Remark 9. If we assume that a unique solution exists, for convergence we don’t really need
to additionally assume that f is Lipschitz. In this case it need only be locally Lipschitz
(which follows in particular from being C1). In the proof, wherever we use the Lipschitz
constant for f , it is possible to replace with a local Lipschitz constant on a neighborhood of
the true solution of the ODE. For simplicity we just adopt the stronger assumption.

Proof. Let f be L-Lipschitz. By Theorem 6, we know that a unique solution exists for (4.1).
We define at each time an error

En := |xn � x(tn)|.

We want to bound the propagation of error from one time step to the next.
Note that

x(tn+1) = x(tn) +

Z
tn+1

tn

f(x(t), t) dt,

and recall (4.3). Subtracting both equations we obtain

xn+1 � x(tn+1) = [xn � x(tn)] +

hf(xn, tn)�

Z
tn+1

tn

f(x(t), t) dt

�

= [xn � x(tn)] +

Z
tn+1

tn

[f(xn, tn)� f(x(t), t)] dt.

Now taking the norm of both sides and applying the triangle inequality we obtain

En+1 En +

Z
tn+1

tn

|f(xn, tn)� f(x(t), t)| dt. (4.5)

Then

|f(xn, tn)� f(x(t), t)| = |f(xn, tn)� f(xn, t) + f(xn, t)� f(x(t), t)|
 |f(xn, tn)� f(xn, t)|+ |f(xn, t)� f(x(t), t)|
 L|t� tn|+ L|xn � x(t)|
 Lh+ L|xn � x(tn) + x(tn)� x(t)|
 Lh+ L|xn � x(tn)|+ L|x(tn)� x(t)|
= Lh+ LEn + L|x(tn)� x(t)|.

Now we want to get a bound on |x(tn)� x(t)| that is independent of n. Now

x(t) = x(tn) +

Z
t

tn

f(x(s), s) ds,

so after subtracting x(tn) from both sides and taking norms, we may derive that

|x(tn)� x(t)| Bh,

where
B := max

t2[0,T]
|f(x(t), t))|.

13

Hence we have derived

|f(xn, tn)� f(x(t), t)| LEn + B̃h,

where B̃ := L(B + 1). Substituting into (4.5) we obtain

En+1 (1 + Lh)En + B̃h2. (4.6)

If we recursively define the sequence cn, n = 0, . . . , N , via

cn+1 = (1 + Lh)cn + B̃h2,

where cn = 0, we can prove inductively using (4.6) that En cn for all n = 0, . . . , N .
Then by computing cn explicitly we obtain a bound on the error En for all n. For

simplicity rewrite
cn+1 = ↵cn + �,

where ↵ := 1 + Lh and � := B̃h2. Note

c0 = 0, c1 = �, c2 = ↵� + �, c3 = ↵2� + ↵� + �, . . .

and it is easy to show by induction that

cn =

n�1X

k=0

↵k

!
�,

or, summing the finite geometric series,

cn =
↵n � 1

↵� 1
�

=
(1 + Lh)n � 1

Lh
· B̃h2. (4.7)

Now 1 + x ex for all x 2 R (by the convexity of x 7! ex) , so

En cn
B̃
�
eLhn � 1

�

L
h (B + 1)

�
eLhN � 1

�
h.

Now recall h = T/N , so

En (B + 1)T
�
eLT � 1

� 1

N
,

and moreover this bound holds for all n = 0, . . . , N . Therefore letting

C = (B + 1)T
�
eLT � 1

�
,

we have
En C/N.

In particular, the scheme is convergent.

14

4.2 Error estimation and Richardson extrapolation

Note that the proof of Theorem 8 furnishes an explicit error bound on the approximate
solution x(N)

0:N . In practice this error bound can be extremely pessimistic, although though the
order of convergence is sharp! By order of convergence, we mean the largest exponent p
such that the error is O(hp) = O(1/Np), and we say for p so defined that a scheme is p-th
order accurate . In the case of Euler’s method, p = 1.

Unfortunately, the optimal preconstant C such that the error at some time t is bounded
asymptotically by Chp may be very hard to estimate a priori. In order to save as much
computation as possible, we want to take h only as small as necessary to achieve a desired
error tolerance, so getting a sharper estimate, even if a posteriori, is quite desirable.

In the sequel we will want to compare our discrete solutions x(N) solutions for dif-
ferent values of N . Note that the N -th discrete solution is only defined at grid points
(0, h, 2h, . . . , T), where h = T/N , so in general for N 0 6= N , x(N)

0:N and x(N 0)
0:N 0 may not be

directly comparable. They can be compared after suitable interpolation to the entire inter-
val [0, T]. However, such interpolation is rarely performed in practice, and moreover, care
must be taken so that the interpolation preserves the order of accuracy of the scheme! In
the simple case of Euler’s method, linear interpolation is sufficient to preserve first-order
accuracy.

For the purposes of this discussion it is more elegant/convenient to assume that such an
interpolation exists (though as we shall see, we will not need to construct it in practice),
so for a general p-th order accurate scheme, we assume that we have an interpolant x(N) :
[0, T]! Rd such that

kx(N) � xk1 = O(1/Np),

where x(·) is here the true solution. (In this section, the superscript does not indicate
repeated differentiation!) In particular, we have for every time t 2 [0, T],

x(N)(t) = x(t) +O(1/Np).

We postulate the more detailed error expansion, consistent with p-th order accuracy:

x(N)(t) = x(t) +
C(t)

Np
+O(1/Np+1).

Plugging in 2N in the place of N (in practice, solving the scheme on a grid that is twice as
fine), we have

x(2N)(t) = x(t) +
C(t)

2pNp
+O(1/Np+1).

Then observe that be taking the linear combination

x̃(N)(t) :=
2px(2N)(t)� x(N)(t)

2p � 1
= x(t) +O(1/Np+1)

we cancel the leading-order contribution to the error.
Then not only is x̃(N) a more accurate solution, but also we can use it to estimate the

error of our original solution x(N). Indeed our error E(N) as a function of time satisfies

E(N)(t) := |x(N)(t)� x(t)| = |x(N)(t)� x̃(N)(t)|+O(1/Np+1),

and in the last expression the first term is only O(1/Np), hence dominates the second term.
Therefore the N -point scheme error at time t can be estimated as

E(N)(t) ⇡ |x(N)(t)� x̃(N)(t)|.

15

In practice, let’s fix some N and h = T/N and say we are interested in estimating the
accuracy of the solution on the fixed grid tn := t(N)

n , n = 0, . . . , N , i.e., on (0, h, 2h, . . . , T).
We can do this by also solving the ODE on the finer grid t(2N)

n , n = 0, . . . , 2N , which
includes the original grid as a subgrid. Then we can simply perform the above procedure
at the grid points tn instead of the entire interval, defining an extrapolated solution

x̃(N)
n

:=
2px(2N)

2n � x(N)
n

2p � 1
,

which is (p+1)-th order accurate. This procedure for determining the extrapolated solution
is called Richardson extrapolation .

4.3 Implicit Euler

In retrospect, the specification of Euler’s method makes a seemingly arbitrary choice in the
difference quotient approximation (4.3), which we could alternatively approximate as

x(tn+1)� x(tn)

h
⇡ f(x(tn+1), tn+1).

The resulting scheme

xn+1 = xn + hf(xn+1, tn+1), n = 0, . . . , N � 1 (4.8)

is called the implicit (or backward) Euler method . The reason it is called implicit
is that given x0, . . . , xn, in order to determine xn+1 we must solve a system of (possibly
nonlinear) equations, since the right-hand side of (4.8) depends on xn+1.

Note that it is not even obvious a priori that a solution exists! However, concern about
this obstacle vanishes as h goes to zero. The general intuition for why this concern vanishes
comes from the implicit function theorem . Indeed, observe that if h = 0, there exists a
(unique) trivial solution xn+1 = xn. The implicit function theorem guarantees precisely that
if we perturb h by a sufficiently small amount, then we can perturb our solution accordingly
to maintain satisfaction of (4.8).

More concretely, rearranging (4.8), we must solve

F (h, x) = 0 (4.9)

for x, where F : R⇥ Rd ! Rd is defined by

F (u, x) := x� uf(x, tn + u)� xn.

Here u is a dummy variable for the step size h, whose value has already been fixed in our
discussion. Note that F (0, xn) = 0, i.e., (0, xn) solves the equation F (u, x) = 0. We want
to say that as we perturb u away from zero, we can deform x to maintain F (u, x) = 0.

Indeed, as long as F is continuously differentiable, the implicit function theorem guar-
antees that under one additional condition (to be specified below), there exists an interval
(��, �) about 0 and a function g : (��, �) ! Rd with g(0) = xn, which you can think of as
mapping a step size u to the corresponding solution x. More concretely, for any u 2 (��, �),
we have F (u, g(u)) = 0. The condition is that the Jacobian of F with respect to x is
invertible at the solution (xn, 0), i.e., that

DxF (0, xn) =
�

@F

@x1
· · · @F

@xn

�

16

is invertible. (Note that the partial derivatives @F

@xk
are vector-valued.) But

DxF (u, x) = I � uDxf(x, tn + u),

so DxF (0, xn) = I is the identity matrix, which is of course invertible.
Therefore, for 0 < h < �, there exists a solution x of (4.9). There is a catch, however! We

don’t know that we can use the same h for every n. Moreover, as we take h smaller, there
infinitely many equations to solve as N !1. In order to guarantee a uniform choice of h,
one needs to sort through the innards of the implicit function theorem to determine what
the choice of � actually depends on. A sufficient (but certainly not necessary condition) that
covers most cases of interest is that f is C2.

If one adopts the simplifying assumption that f is L-Lipschitz, then the idea of Picard
iteration quite easily guarantees the existence of a unique solution to the implicit Euler
method for h < 1/L. To see this, observe that solving (4.9) for x 2 Rd is equivalent to
finding a fixed point of � : Rd ! Rd defined by

�(x) := xn + hf(x, tn + h).

But
|�(x)� �(y)| = h|f(x, tn + h)� f(y, tn + h)| Lh|x� y|,

so � is a contraction map for h < 1/L, as claimed, and there exists a unique solution.
This argument, together with a simple modification of our proof of Theorem 8, yields the
following.

Theorem 10. If f is Lipschitz, then for h sufficiently small the implicit Euler method
admits a unique solution x(N)

0:N , which is convergent with maxn=0,...,N |x(N)
n �x(nh)| = O(h) =

O(N�1).

Why consider an implicit method as opposed to an explicit one, given the hassle? A
large part of the course seeks to address this question, and we defer it for now. We also
remark that for any implicit method, considerations regarding the existence of solutions are
quite similar to those made above.

5 Taylor series methods

This section is conceptually significant but not practical useful, at least not directly. It is a
first attempt to systematically derive schemes of arbitrary orders of accuracy.

In order to derive Euler’s method we substituted the difference quotient approximation

x0(tn) =
x(tn+1)� x(tn)

h
+O(h),

neglecting the O(h) remainder term, into the ODE (4.1). Equivalently we may write

x(tn+1) = x(tn) + hx0(tn) +O(h2).

The error term in this last expression can be expanded more systematically via Taylor series.
For instance, increasing the order of approximation by one, we obtain

x(tn+1) = x(tn) + hx0(tn) +
h2

2
x00(tn) +O(h3).

17

The remainder term is called the local truncation error (LTE), which term has slightly
different meanings dependent on the context. The general gist is that it is the amount by
which the equations for xn defining our scheme fails to hold when the true solution value
x(tn) at time tn is plugged in for xn.

The key in our derivation of Euler’s method is that x0(tn) is known in terms of x(tn)
and tn alone via the ODE (4.1), which we reproduce here as

x0(t) = f(x(t), t). (5.1)

To get an expression for x00(tn) in terms of x(tn) and tn alone, we must differentiate the
ODE. Indeed, differentiating both sides of (5.1) we obtain

x00(t) = rxf(x(t), t)) · x0(t) + @tf(x(t), t)

= rxf(x(t), t)) · f(x(t), t) + @tf(x(t), t)

Given an analytic expression for f , assuming it is differentiable, we may typically derive
analytic expressions for rxf and @tf . Then we can write the Taylor series method of
order 2, or TS(2) for short, as

xn+1 = xn + hf(xn, tn) +
h2

2
[Dxf(xn, tn) · f(xn, tn) + @tf(xn, tn)] ,

where Dx denotes the Jacobian matrix (with respect to the x variables) and the dot indicates
matrix-vector multiplication. Note that this is an explicit method.

The general Taylor series method of order p, or TS(p), can be derived similarly by
repeated differentiation of (5.1). By differentiating p times, we express the p-th derivative
x(p)(t) in terms of x(k)(t) for k = 0, . . . , p�1. One can then recursively replace the derivatives
up to (p � 1)-th order with expressions in terms of derivatives up to (p � 2)-th order, etc.,
in order to obtain an expression for x(p)(t) in terms of x(t) alone. It is tedious, however, to
write a detailed expression for the scheme.

Abstractly we may write

xn+1 = xn + hf(xn, tn) +
h2

2
f (2)(xn, tn) + · · ·+ hp

p!
f (p)(xn, tn),

where the f (k), k = 2, . . . , p are the appropriate functions, e.g.,

f (2)(x, t) := Dxf(x, t) · f(x, t) + @tf(x, t),

as derived above. More generally each function f (k)(x, t) satisfies the condition that for the
true solution x(t),

dk

dtk
[f(x(t), t)] = f (k+1)(x(t), t). (5.2)

For ease of notation we further define f (1) := f , so the TS(p) scheme may be written
compactly as

xn+1 = xn +
pX

k=1

hk

k!
f (k)(xn, tn). (5.3)

Theorem 11. Suppose that f is Cp and f (k) is Lipschitz for k = 1, . . . , p. Then TS(p) is
convergent, and moreover kx(N) � x(N)

truek1 = O(hp).

18

Remark 12. We don’t really need to additionally assume that the f (k) are (globally) Lips-
chitz. Assuming that a unique solution exists, it suffices for them all to be merely locally
Lipschitz, which is in particular guaranteed by the assumption that f is Cp. In the proof,
wherever we use Lipschitz constants, it is possible to replace them with local Lipschitz con-
stants on a neighborhood of the true solution of the ODE. For simplicity we just adopt the
stronger assumption.

Proof. Let L be sufficiently large so that f (k) is L-Lipschitz for k = 1, . . . , p. We will
reason by analogy to the convergence proof for Euler’s method (Theorem 8). Recall the key
equation

xn+1 � x(tn+1) = [xn � x(tn)] +

hf(xn, tn)�

Z
tn+1

tn

f(x(t), t) dt

�
.

in the proof of Euler’s method, where the key idea was that the first bracketed term is
bounded in terms of En and the second is bounded by (1 + B1h)En + B2h2 for some
constants B1, B2 independent of n.

This time, referring to (5.3), we have instead the analogous equation

xn+1 � x(tn+1) = [xn � x(tn)] +

"
pX

k=1

hk

k!
f (k)(xn, tn)�

Z
tn+1

tn

f(x(t), t) dt

#
, (5.4)

and we want to bound the second term by (1+B1h)En+B2hp+1 for some constants B1, B2.
Inside the integral within the second bracketed term, we expand f(x(t), t) by Taylor series,
i.e., as

f(x(t), t) =
p�1X

k=0

(t� tn)k

k!

dk

dtk
[f(x(t), t)]

����
t=tn

+O(hp),

where the O(hp) term is bounded independently of n and N .
But by the defining property (5.2) of the f (k), we can equivalently write

f(x(t), t) =
p�1X

k=0

(t� tn)k

k!
f (k+1)(x(tn), tn) +O(hp),

where we additionally define f (1) := f . After performing the exact integration
Z

tn+1

tn

(t� tn)
k dt =

(tn+1 � tn)k+1

(k + 1)
=

hk+1

k + 1

and shifting the summation index we have
Z

tn+1

tn

f(x(t), t) dt =
pX

k=1

hk

k!
f (k)(x(tn), tn) +O(hp+1).

Then (5.4) can be rewritten as

xn+1 � x(tn+1) = [xn � x(tn)] +
pX

k=1

hk

k!

h
f (k)(xn, tn)� f (k)(x(tn), tn)

i
+O(hp+1).

19

Taking norms of both sides, using the triangle inequality and the Lipschitz property for each
of the f (k), we obtain

En+1 En +
pX

k=1

hk

k!
LEn +O(hp+1)

=

1 + L

pX

k=1

hk

k!

!
En +O(hp+1).

Note that for small h (say concretely for h 1), there exists some universal B1 � 0 such
that

L
pX

k=1

hk

k!
 B1h,

and there exists also some B2 � 0 such that then

En+1 (1 +B1h)En +B2h
p+1

for all h sufficiently small.
By analogy to (4.7) and the reasoning that follows (with B1 in the place of L and B2 in

the place of B̃), we nowobtain

En
(1 +B1h)n+1 � 1

B1h
·B2h

p+1 Chp

for an appropriate constant C independent of n and N . This completes the proof.

Taylor series methods have a drawback that is often fatal: they require us to compute
all the p-th order partial derivatives of f , which, depending on the practical context may
not be readily available or may be very expensive to evaluate. Still they serve as a useful
starting point and inspiration for thinking about higher-order schemes.

20

As the sun eclipses the stars by its
brilliancy, so people of knowledge will
eclipse the fame of others in assemblies
of the public if they propose algebraic
problems, and still more if they solve
them.

Brahmagupta

Part II

Linear multistep methods
Given the solution x(t) at time t of (1.1), we already encountered two different ways of
approximately advancing the solution by one increment h of time. The first was

x(t+ h) ⇡ x(t) + hf(x(t), t),

which led to the explicit Euler method, and the second was

x(t+ h) ⇡ x(t) + hf(x(t+ h), t+ h),

which led to the implicit Euler method.
One can readily imagine a mixture of the two, approaches:

x(t+ h) ⇡ x(t) +
1

2
[f(x(t), t) + f(x(t+ h), t+ h)] ,

which in fact has one higher order of accuracy, as we shall see.
The resulting numerical schemes were written compactly as

xn+1 � xn = hfn (Explicit Euler)
xn+1 � xn = hfn+1 (Implicit Euler)
xn+1 � xn = h(fn + fn+1) (Trapezoidal rule)

(5.5)

where as always fn = f(xn, tn) implicitly depends on xn.
Linear multistep methods (LMMs) generalize these schemes considerably. The gen-

eral form of an r-step LMM is

rX

j=0

↵jxn+j = h
rX

j=0

�jfn+j . (5.6)

Assuming that xm is known for m = 0, . . . , n+r�1, this equation can in principle be solved
for the next value xn+r. Note that the schemes in (5.5) are one-step LMMs. We will discuss
the necessary construction of starting values later on.

We will always have ↵r 6= 0, so by rescaling both sides of (5.6) we can assume without
loss of generality that ↵r = 1 unless otherwise noted.

21

6 Local truncation error and consistency

In order to check how accurate we expect a method to be, it makes sense to plug the true
solution x(t) (evaluated at the discrete times tn) into both sides of (5.6) and measure the
size of their discrepancy, which we call the local truncation error (LTE), similarly as
in the setting of Taylor series methods. Here as well, an LTE of size O(hp+1) will induce a
scheme of order p.

To wit, take xn := x(tn), and since x(t) solves the ODE (1.1), we have x0(tn) =
f(x(tn), tn) = fn. Then the difference of the LHS and RHS of (5.6), namely the LTE,
is given by

⌧n :=
rX

j=0

↵jx(tn+j)� h
rX

j=0

�jx
0(tn+j).

We can define the LTE more generally as a function of continuous time via

⌧(t) :=
rX

j=0

↵jx(t+ jh)� h
rX

j=0

�jx
0(t+ jh).

More generally we can think of the function ⌧(·) as the result of the application of a linear
operator Lh (fixed for a given scheme) to the solution x(·), where for a differentiable function
z, Lhz is defined by

Lhz(t) :=
rX

j=0

↵jz(t+ jh)� h
rX

j=0

�jz
0(t+ jh). (6.1)

6.1 One-step methods

Let us now consider the simple cases of the one-step LMMs of (5.5).

6.1.1 Explicit Euler

We begin with explicit Euler. In this case

Lhz(t) = z(t+ h)� z(t)� hz0(t).

The trick for analyzing LTE is to plug in Taylor series about t everywhere we can. Here
there is only one opportunity

Lhz(t) = z(t) + hz0(t) +O(h2)� z(t).� hz0(t) = O(h2)

Note that by the Lagrange error bound, the preconstant in the O(h2) term is bounded by

sup
u2[t,t+h]

|z00(t)|
2

h2 1

2
kz00k1 h2

In general, we will need one more derivative than our order of accuracy in order to get a
quantitative bound on the LTE. If the order of the scheme is p, a quantative bound can
typically be phrased in terms of kz(p)k1.

By Taylor-expanding to one higher order (assuming an extra derivative), we obtain a
more detailed estimate

Lhz(t) =
h2

2
z00(t) +O(h3).

22

From this estimate we can see that we do not (in general) have O(h3) LTE, i.e., O(h2) is
the sharpest possible bound.

We will just assume henceforth that our test function z is smooth and not comment
further on how many derivatives are needed.

6.1.2 Implicit Euler

In the case of implicit Euler, we have

Lhz(t) = [z(t+ h)� z(t)]� hz0(t+ h).

Here we must also expand the z0(t+ h) term, yielding

Lhz(t) =

hz0(t) +

h2

2
z00(t) +O(h3)

�
� hz0(t+ h)

=

hz0(t) +

h2

2
z00(t) +O(h3)

�
� h

⇥
z0(t) + hz00(t) +O(h2)

⇤

= �h2

2
z00(t) +O(h3).

From this estimate we can see that the LTE is O(h2) but not O(h3) in general.

6.1.3 Trapezoidal rule

For the trapezoidal rule we have

Lhz(t) = [z(t+ h)� z(t)]� h

2
z0(t+ h)� h

2
z0(t)

=

hz0(t) +

h2

2
z00(t) +O(h3)

�
� h

2

⇥
z0(t) + hz00(t) +O(h2)

⇤
� h

2
z0(t)

= O(h3).

More detailed calculation shows that the terms of order h3 do not cancel.
Therefore in fact the trapezoidal rule is second-order accurate, though it is only a one-

step method like explicit/implicit Euler.

6.2 Consistency

We say that an LMM is consistent of order p or order-p consistent if Lhz(t) = O(hp+1)
for every smooth z. In particular, we say that it is consistent if it is order-p consistent for
some p � 1.

In general, there exists for every p some formal expansion

Lhz(t) = C0z(t) + C1hz
0(t) + C2h

2z(2)(t) + · · · ,

where the constants Ck are independent of z. If an LMM is order-p consistent, then we
know that C0 = · · · = Cp = 0, and

Lhz(t) = Cp+1h
p+1z(p+1)(t) +O(hp+2),

where Cp+1 6= 0. This nonzero coefficient Cp+1 is called the error constant of the LMM.
Note for example that the error constants of explicit and implicit Euler are 1/2 and �1/2,

23

respectively. In general, the error constant can in principle be computed analytically, and it
may be useful to do so! Indeed, Milne’s device (to be discussed later) uses error constants
to estimate the error of an LMM and possibly improve it.

It is not hard to derive necessary and sufficient conditions for the consistency of (5.6).
Recall (6.1) and expand up to O(h2) error as

Lhz(t) =
rX

j=0

↵jz(t+ jh)� h
rX

j=0

�jz
0(t+ jh)

=
rX

j=0

↵j [z(t) + jhz0(t)]� h
rX

j=0

�j [z
0(t)] +O(h2)

=

0

@
rX

j=0

↵j

1

A z(t) + h

0

@
rX

j=0

j↵j � �j

1

A z0(t) +O(h2),

so

C0 =
rX

j=0

↵j , C1 =
rX

j=0

(j↵j � �j) , (6.2)

and we have consistency if and only if both quantities are zero.

Theorem 13. An LMM (5.6) is consistent if and only if

rX

j=0

↵j =
rX

j=0

(j↵j � �j) = 0.

It is useful for later purposes to define the first and second characteristic polyno-
mials of the LMM (5.6) as, respectively

⇢(w) =
rX

j=0

↵jw
j , �(w) =

rX

j=0

�jw
j .

We can then see that consistency is equivalent to the conditions that

⇢(1) = 0, ⇢0(1) = �(1).

As we shall later see, consistency does not imply convergence! There is an addi-
tional stability requirement that we shall treat later.

6.3 Starting values

Note that to solve an r-step LMM, we need r starting values x0, . . . , xr�1 in order to
initialize the scheme. This is annoying! We are only given x0 = x(0) from the initial
condition of (1.1).

The most naive option is to simply take xj = x0 for j = 1, . . . , r�1. However, this might
sacrifice the order of accuracy of our scheme. Let us try to get some heuristic understanding
of what we require.

In general we have x(tj) = x0 + ⇥(h) for j = 0, . . . , r � 1, since x(t) is differentiable at
t = 0. Therefore under the naive approach, our error ej := xj�x(tj) is already ⇥(h) by time
step j = r� 1. If our scheme is order-p consistent in the sense that the LTE is O(hp+1), we

24

will accumulate an additional error that is O(hp+1) at each of the remaining O(h�1) time
steps (cf. the proof of Theorem 11, conceptually), i.e., we will accumulate additional error of
O(hp). However, this additional error accumulation is dominated by our ⇥(h) initialization
error, and the entire method is really only first-order consistent. If p = 1, this is no worse
than expected, and we can adopt the naive approach without too much regret.

More generally, the preceding argument suggests that we need to initialize xj = x(tj) +
O(hp) in order to fulfill the dream of order-p accuracy for an LMM with O(hp+1) LTE. We
could determine these intitial values, for example, by running r�1 steps of the order-(p�1)-
accurate Taylor series method TS(p�1). Since the number of steps needed for initialization
is independent of the step size h, despite the disadvantages of Taylor series methods this may
be a reasonable practical approach. In order to solve the ODE up to time T , we will need
to run ⇠ h�1 steps of the LMM, so as h! 0, the initialization cost should be negligible.

Still, it may be more practically efficient to use Runge-Kutta methods, which do not
require starting values, for initialization. (Runge-Kutta methods will be the subject of the
next unit of the course.)

7 Families of LMMs

At this point we introduce several important families of LMMs that go beyond r = 1 to
achieve higher orders of accuracy. Later on we will discuss the stability and convergence of
these methods, but for now we focus only on the local truncation error.

7.1 Integral-based methods

Recall we are essentially trying to predict x(tn+r) based on the values x(tn+j) for j =
0, . . . , r � 1. Also recall that the solution of (1.1) satisfies

x(tn+r) = x(tn+r�1) +

Z
tn+r

tn+r�1

f(x(t), t) dt. (7.1)

Can we use the preceding values x(tn+j) to approximate the integral term more accurately?
Note that explicit Euler, implicit Euler, and the trapezoidal rule follow, respectively, from
applying the left endpoint, right endpoint, and trapezoidal rules for approximating the
integral.

In particular, the trapezoidal rule can be interpreted as replacing f(x(t), t)) with a linear
interpolation over the interval of integration. But to begin with, we will focus on developing
a higher-order explicit approachg. As such we will first generalize the left endpoint rule.
This can be seen as replacing f(x(t), t) with the ‘trivial polynomial interpolation’ which
matches the value at the left endpoint with a constant polynomial.

7.1.1 Adams-Bashforth methods

More generally, we can use all r of the values fn+j = f (x(tn+j), tn+j), j = 0, . . . , r � 1,
to construct a more accurate polynomial interpolation over the interval [tn+r�1, tn+r]. We
expect our interpolation to then achieve O(hr) accuracy pointwise, so our LTE will be
O(hp+1), and we will have a method that is order-p consistent. In fact as we shall see
the resulting r-step Adams-Bashforth method will be a LMM, since the interpolation
depends linearly on the fn+j .

25

Note that, provided we can construct the interpolation with such accuracy, we have
verified our LTE of O(hr+1) by a rather different approach compared to the ‘plug in Taylor
series and cancel terms’ approach suggested above! Indeed, the order of accuracy is ensured
by Corollary 74 of Appendix A.

The formula (7.1) suggests that the ↵j as in (5.6) for this method are

↵r = 1, ↵r�1 = �1, ↵r�2 = · · · = ↵0 = 0.

Then in order to determine the �j , we can ease the notation by setting n = 0. Let

t = (t0, t1, . . . , tr�1) = (0, h, . . . , (r � 1)h),

and let `j(t; t) be the Lagrange basis polynomials as in Appendix A:

`j(t; t) =
Y

i2{0,...,r�1}\{j}

t� ih

(j � i)h
, j = 0, . . . , r � 1.

Note moreover that
Y

i2{0,...,r�1}\{j}

(j � i) = (�1)r�1�jj!(r � 1� j)!,

so
`j(ht; t) =

(�1)r�1�j

j!(r � 1� j)!

Y

i2{0,...,r�1}\{j}

(t� i).

Then we plug the approximation

f(x(t), t) ⇡
r�1X

j=0

`j(t; t)fj

into (7.1) to obtain

�j =
1

h

Z
rh

(r�1)h
`j(t; t) dt

=

Z
r

r�1
`j(ht; t) dt

=
(�1)r�1�j

j!(r � 1� j)!

Z
r

r�1

Y

i2{0,...,r�1}\{j}

(t� i) dt

=
(�1)r�1�j

j!(r � 1� j)!

Z
r

r�1

Y

i2{0,...,r�1}\{r�1�j}

(t� (r � 1� i)) dt

=
(�1)r�1�j

j!(r � 1� j)!

Z 1

0

Y

i2{0,...,r�1}\{r�1�j}

(t+ i) dt,

or equivalently:

�r�1�j =
(�1)j

j!(r � 1� j)!

Z 1

0

Y

i2{0,...,r�1}\j}

(t+ i) dt, j = 0, . . . , r � 1. (7.2)

(Note that �r = 0, which ensures that the method is explicit).
The integrals in (7.2) can be evaluated analytically, but there does not seem to be a neat

formula. Of course, once they are worked out a single time, they never need be computed
again!

26

7.1.2 Adams-Moulton methods

If we allow ourselves to additionally use the right endpoint of our interval of integration
(as in the trapezoidal rule), then we can get a polynomial interpolation with one additional
order of accuracy. Specifically, the LTE is O(hr+2), and the method is now of order r + 1.
However, beware that this so-called Adams-Moulton method is now implicit!

Here once again
↵r = 1, ↵r�1 = �1, ↵r�2 = · · · = ↵0 = 0,

but we take
t = (t0, t1, . . . , tr) = (0, h, . . . , rh),

and now we have
`j(ht; t) =

(�1)r�j

j!(r � j)!

Y

i2{0,...,r}\{j}

(t� i),

which ultimately implies

�r�j =
(�1)j

j!(r � j)!

Z 1

0

Y

i2{0,...,r}\j}

(t+ i� 1) dt, j = 0, . . . , r.

7.1.3 Nyström methods

The (explicit) Nyström methods are based on the identity

x(tn+r) = x(tn+r�2) +

Z
tn+r

tn+r�2

f(x(t), t) dt. (7.3)

The data (tn, fn), . . . , (tn+r�1, fn+r�1) can be used to construct a Lagrange interpolating
polynomial which may then be substituted for f(x(t), t) in the preceding expression to
derive the r-step Nyström method. The order of accuracy is r, same as that of the r-step
Adams-Bashforth method. For such methods we always have

↵r = 1, ↵r�1 = 0, ↵r�2 = �1, ↵r�3 = · · · = ↵0 = 0.

Further general details are left as an exercise.
Let us illustrate the special case of the 2-step explicit Nyström method. In this case we

insert into (7.3) the linear interpolation

f(x(t), t) ⇡ fn

✓
1� t� tn

h

◆
+ fn+1

t� tn
h

,

yielding

�0 =

Z 2

0
(1� t) dt = 0

and

�1 =

Z 2

0
t dt = 2.

Hence the 2-step explicit Nyström method is given by

xn+2 � xn = 2hfn+1,

27

or equivalently
xn+2 � xn

2h
= fn+1.

This is called the midpoint method or leapfrog method . It can of course be derived
more simply by substituting the second-order accurate difference quotient approximation

x0(t) =
x(t+ h)� x(t� h)

2h
+O(h2)

into the ODE (1.1). (We leave the verification of O(h2) error here as an exercise.)

7.1.4 Milne-Simpson methods

The Milne-Simpson methods are to the Nyström methods as the Adams-Moulton meth-
ods are to the Adams-Bashforth methods, using the full data (tn, fn), . . . , (tn+r, fn+r) for
polynomial interpolation. Sometimes these are called (implicit) Nyström methods, and the
order of accuracy is r + 1 in general. Again

↵r = 1, ↵r�1 = 0, ↵r�2 = �1, ↵r�3 = · · · = ↵0 = 0,

and further details are left as an exercise.
We illustrate the special case of the 2-step Milne-Simpson method. Here the substitu-

tion of the interpolating polynomiali is equivalent to approxmating the integral in (7.3) by
Simpson’s rule, Z

b

a

g(t) dt ⇡
g(a) + 4g

�
a+b

2

�
+ g(b)

6
(b� a),

which yields the method that we also call Simpson’s rule :

xn+2 � xn =
2h

6
(fn + 4fn+1 + fn+2) .

In fact Simpson’s rule (due to it’s high symmetry about the (n + 1)-th time step) enjoys
one higher order of accuracy than is guaranteed a priori by its status as the 2-step Milne-
Simpson method, i.e., it is order-4 consistent. The verification of this is left as an exercise.

7.2 Backward differentiation formulas

The LMMs of Adams and Nyström type considered above adopt the approach of taking
only a few of the ↵j nonzero and then guaranteeing higher orders of accuracy by integral
approximation within an integral formulation of the ODE (1.1), as in (7.1).

An alternative approach is to take the differential formulation

x0(t) = f(x(t), t) (7.4)

and simply plug higher-order accurate finite difference approximations into the left-hand
side. In the resulting scheme, only one of the �j will be nonzero, but perhaps many of the
↵j will be nonzero, depending on the order of the method.

We already have some examples that can be interpreted this way: explicit Euler, im-
plicit/backward Euler, and the midpoint method are based on substitution of the backward,
forward, and central finite difference formulas

x(t)� x(t� h)

h
,

x(t+ h)� x(t)

h
,

x(t+ h)� x(t� h)

2h

28

into (7.4) at time t.
At the same time, we can also think of backward Euler as the result of substituting a

backward finite difference formula into (7.4) at time t+h. This perspective is generalized by
the backward differentiation formulas (BDFs), which are of interest for their stability
properties to be considered later.

Concretely, we seek coefficients cj such that

z0(t) ⇡ 1

h

rX

j=0

cjz(t� jh) (7.5)

for smooth z. In fact it will be possible for the approximation in (7.5) to hold with O(hr)
error.

Then the resulting BDF is derived by substituting the approximation (7.5) into (7.4)
at time t + rh, resulting in a LMM with coefficients ↵j = cr�j for j = 0, . . . , r and �r =
1, �0 = · · · = �r�1 = 0.

Note that by considering z̃(t) = z(�t), it is equivalent to find aj such that

z0(t) =
1

h

rX

j=0

vjz(t+ jh) +O(hr) (7.6)

for all smooth z, i.e., to determine a higher-order forward differentiation formula, and then
set cj = �vj for j = 0, . . . , r.

Simply expand
rX

j=0

vjz(t+ jh) =
rX

j=0

vj

rX

k=0

z(k)(t)
jkhk

k!
+O(hr+1)

!

=
rX

k=0

0

@
rX

j=0

jkvj

1

A z(k)(t)
hk

k!
+O(hr+1),

where we interpret 00 = 1 for notational compactness. Note that to guarantee (7.6) we need

rX

j=0

jkvj =

8
><

>:

0, k = 0,

1, k = 1,

0, k = 2, . . . , r.

for all k = 1, . . . , r, and we need
Pvj

j=0 jvj
We can view this is a linear system of equations for the vj . Define the (r + 1)⇥ (r + 1)

matrix A = (Aij) = (ji), where we have adopted a zero-indexing convention for the indices
i, j = 0, . . . , r. We can also write out

A =

0

BBBBB@

1 1 1 1 · · · 1
0 1 2 3 · · · r
02 12 22 32 · · · r2

...
...

...
...

. . .
...

0r 1r 2r 3r · · · rr

1

CCCCCA

If we let v = (v0, . . . , vr)> 2 Rr+1 be the vector of unknown coefficients, then we are seeking
to solve the linear system

Av = e1, (7.7)

29

where e1 = (0, 1, 0, . . . , 0)>.
In fact V := A> is a Vandermonde matrix , i.e., a matrix of the form

V = (aj
i
) =

0

BBBBB@

1 a0 a20 a30 · · · ar0
1 a1 a21 a31 · · · ar1
1 a2 a22 a32 · · · ar2
...

...
...

...
. . .

...
1 ar a2

r
ar · · · ar

r

1

CCCCCA
.

The classical formula
det(V) = det(A) =

Y

0i<jr

(aj � ai)

guarantees in particular that A is invertible if and only if the ai are all distinct. In our case
ai = i for i = 0, . . . , r, so A is invertible and (7.7) has a unique solution v, which uniquely
specifies a unique BDF scheme of order r via ↵j = �vr�j for j = 0, . . . , r.

8 Solving implicit methods

Recall the form (5.6) of the general LMM, which we reproduce here:

rX

j=0

↵jxn+j = h
rX

j=0

�jfn+j .

Without loss of generality, assuming ↵r 6= 0 (which it always is in methods we consider),
we can assume ↵r = 1 and rearrange as

xn+r =
r�1X

j=0

(�↵j)xn+j + h�rf(xn+r, tn+r) +
r�1X

j=0

h�jfn+j .

For fixed xn, . . . , xn+r�1, define the function g : Rd ! Rd by

�(u) :=
r�1X

j=0

(�↵j)xn+j + h�rf(u, tn+r) +
r�1X

j=0

h�jfn+j .

Then to solve the implicit scheme for xn+r, given all preceding values xn, . . . , xn+r�1, we
must solve the (generally nonlinear) system of equations

u = �(u). (8.1)

Or, defining F (u) := u� �(u), we may write even more abstractly

F (u) = 0. (8.2)

General approaches to solving such systems of equations are iterative, in the sense that
a solution u? is furnished as a limit

u? = lim
k!1

u(k),

where each successive iterate u(k+1) can be feasibly computed from the last iterate u(k).

30

We say that an iterative method converges linearly with rate ↵ 2 (0, 1) if

|u(k) � u?| = O(↵k).

You might think that we should say that such a method converges ‘exponentially,’ but in fact
it is much less classy to do so. It is the logarithm of the error that converges linearly, and it
is important to stay humble, especially since, as we shall see it is always possible in principle
to do much better (though perhaps at great cost). Indeed, if a method converges linearly,
this means precisely that each successive digit of accuracy is just as costly to produce as
the last digit. If a method converges superlinearly , then each successive digit comes more
easily, and once we are close to a solution, we tend to get to machine precision in a hurry.

8.1 Fixed-point / Picard iteration

We take the perspective of solving (8.1), which is equivalent to looking for a fixed point of
�. Hopefully this should recall Picard iteration!

8.1.1 Globally Lipschitz case

Recall our friend the Banach fixed point theorem (Theorem 3), which says that a solution
u? can be furnished as the limit limk!1 u(k) of the fixed-point iteration defined by

u(k+1) = �(u(k)),

for arbitrary initialization u(0), as long as � is a contraction mapping.
Note that for our integral-based LMMs, this approach is a very literal attempt to nu-

merically implement our construction of the solution of (1.1) via Picard iteration on short
subintervals of [0, T], as in the proof of Theorem 6.

Now if f is L-Lipschitz, as in the proof of Theorem 6, then we have

|�(u)� �(v)| = h|�r| |f(u, tn+r)� f(v, tn+r)|
 L|�r|h |u� v|,

so if h < 1/(L|�r|), then indeed � is a contraction mapping with a unique fixed point.

8.1.2 General case

The global Lipschitz assumption on f is a bit strict, so let us explain why it is not really
necessary for obtaining a canonically defined solution (once h becomes sufficiently small).

Unfortunately, there is no way to guarantee in general that � is a contraction mapping.
However, for small step size h, � is locally a contraction mapping near xn ⇡ · · · ⇡ xn+r�1,
all of which differ only by O(h) provided our solution is so far consistent.

Indeed, by Theorem 13, we know that
P

r�1
j=0 ↵j = �1, so

�(u) = xn+r�1 +O(h),

and xn is ‘nearly fixed’ by �. The same argument via the implicit function theorem as in
Section 4.3 implies that for h sufficiently small there exists a (locally unique) fixed point
u? = u?(h) = xn+r�1 +O(h).

Moreover,
D�(u) = h�rDxf(u, tn+r),

31

and in particular kD�(u?)k = O(h), where k · k indicates the Euclidean operator norm.
Suppose h is sufficiently small such that ↵0 := kD�(u?)k < 1.

We can use D� to control the local Lipschitz constant near u?. Indeed, note that by the
fundamental theorem of calculus,

�(u)� �(v) =

Z 1

0

d

dt
�(tu+ (1� t)v) dt

=

Z 1

0
D�(tu+ (1� t)v) (u� v) dt,

so

|�(u)� �(v)|
Z 1

0
|D�(tu+ (1� t)v) (u� v)| dt

Z 1

0
kD�(tu+ (1� t)v)k |u� v| dt

sup
w2Br(u?)

kD�(w)k
!
|u� v|,

provided u and v are contained in the ball

Br(u
?) = {u : |u� u?| r}

of radius r about u?. Note that if f (hence also �) is C1, then for any ↵ 2 (↵0, 1), there
exists r > 0 sufficiently small (independent of h) such that kD�(u)�D�(u?)k ↵� ↵0 on
Br(u?). Henceforth assume that r is taken to guarantee this, so

|�(u)� �(v)| ↵ |u� v| (8.3)

for all u, v 2 Br(u?).
We could apply Banach’s fixed point theorem to the space Br(u?) if we knew that it

was actually preserved by �, i.e., that for u 2 Br(u?),the image �(u) 2 Br(u?) as well. But
actually we do know this, because by applying (8.3) with u? in place of v, we have

|�(u)� u?| = |�(u)� �(u?)| ↵ |u� u?| ↵r r

for all u 2 Br(u?).
Since u?(h) = xn+r�1 + O(h), we have for h sufficiently small that xn+r�1 2 Br(u?),

so in practice we can compute xn+r := u? by applying fixed-point iteration intialized at
xn+r�1.

As in the discussion of Section (4.3), some extra work (given that the method is conver-
gent) can be used to guarantee that given a fixed choice of ↵ < 1, there exists a choice of r
that is independent of n and N in the limit h! 0, but we will not get into this.

8.2 Newton’s method

In this section we concern ourselves with the solution of a general system of d nonlinear
equation sin d unknowns. We have put the problem of solving an implicit method in this
form via (8.2), which we reproduce here as

F (u) = 0, (8.4)

32

where F : Rd ! Rd. We have argued above via the implicit function theorem that for the
equations of interest to us, we can easily pick an initial guess u0 which lies close to a true
solution u? of (8.4) in the sense that u? = u0 +O(h).

The idea of Newton’s method (or the Newton-Raphson method) is to iterate the
following steps until convergence is achieved.

1. Linearize the equations (8.4) about our current guess.

2. Solve the linearized equations to get a new guess.

More concretely, given k-th iterate uk 2 Rd which is our current guess, the (k+1)-th iterate
is furnished by forming the linearized equations

F (uk) +DF (uk) · (u� uk) = 0.

Then the unique solution (provided invertibility of the Jacobian at uk) defines our next
iterate as

uk+1 = uk �DF (uk)
�1F (uk). (8.5)

The global convergence of Newton’s method is very tricky to understand, but locally it
is not. First of all, if we assume that DF (u?) is invertible (as is guaranteed to be the case
for h sufficiently small), then DF (u) will remain invertible in some small neighborhood of
u?, and our concerns about invertibility go away.

If we initialize sufficiently close to the true solution u? (as can be guaranteed in the
h! 0 limit), can we understand the rate of convergence of uk ! u? as k !1? Yes:

Theorem 14. Let F : Rd ! Rd be C2-smooth and u? 2 Rd such that F (u?) = 0 and
DF (u?) is invertible. There exists ⇢ > 0 such that if |u0 � u?| ⇢, then Newton’s method,
as defined by the iteration

uk+1 = uk �DF (uk)
�1F (uk)

for k � 0, converges to u? and moreover there exist constants ↵ > 0 and � 2 R such that

log |uk � u?| �↵2k + �.

Remark 15. We shall see in the proof that there exists M > 0 such that

|uk+1 � u?| M |uk � u?|2

for all k � 0, which implies the stated result. This inequality is the defining condition for
quadratic convergence .

Proof. Without loss of generality (just be translating the objective and vertical shift), we
can assume that u? = 0. For any r > 0, define Br := Br(0) to be the ball of radius r about
the solution. Choose R > 0 sufficiently small such that DF is invertible on BR. Now for
any v 2 BR, we can define

I(v) = v �DF (v)�1F (v)

to be the image of v under one iteration of Newton’s method.
There are two notions of error relevant to the problem. For a point v 2 Rd, we say that

its corresponding ‘equation error’ is |F (v)|, which measures the amount by which v fails to
solve the target equation F (u) = 0. Meanwhile, the ‘true error’ of v is simply |v|, which
measures the amount by which v differs from the true solution u = 0.

33

Let v 2 BR, and let w = I(v). We will plug w back into F and determine the equation
error |F (w)| for w. We will bound |F (w)| in terms of |F (v)| to show that the equation error
is decreasing as we iterate.

Then we will show that the equation error and the true error are essentially equivalent
in that they are each bounded by a constant multiple of the other. Therefore the rate of
convergence of the equation error implies the same rate of convergence of the true error.

For the first task, it is useful to rewrite F (u) for arbitrary u via Taylor expansion about
v as

F (u) = F (v) +DF (v) · (u� v) + v(u), (8.6)

where v(u) is simply defined as the necessary remainder

 v(u) := F (u)� [F (v) +DF (v) · (u� v)] ,

and Taylor’s theorem implies that there exists C > 0 independent of v 2 BR such that
| v(u)| C|u� v|2 on BR.

Then observe that if we plug w = I(v) into (8.6), we obtain precisely

F (w) = v(w),

so

|F (w)| C|w � v|2

= C|DF (v)�1F (v)|2

 CkDF (v)�1k2|F (v)|2

 C̃|F (v)|2,

where C̃ > 0 is a suitably large constant independent of v 2 BR, which exists by the
continuity of DF�1 on BR.

In summary, we have shown that

|F (I(v))| C̃|F (v)|2 (8.7)

for all v 2 BR.
Now we turn to the second task: showing the equivalence of the equation error and the

true error. Specifically, we will show that there exist a,A, r > 0 such that

a|u| |F (u)| A|u|

for all u 2 Br.
To see this we Taylor-expand about the origin (true solution) as

F (u) = DF (0) · u+ �(u), (8.8)

where |�(u)| C 0|u|2 for suitable C 0 > 0. Note that then

|F (u)| kDF (0)k |u|+ C 0|u|2 = (kDF (0)k+ C 0|u|) |u|,

so as long as r kDF (0)k
C0 , we have

|F (u)| A|u|

34

for u 2 Br, where we have defined A := 2kDF (0)k.
Meanwhile, we can rearrange (8.8) to obtain

u = DF (0)�1 [F (u)� �(u)] ,

so then

|u| 1

2a
|F (u)|+ C 00|u|2,

where a := 1
2kDF (0)�1k and C 00 := kDF (0)�1kC 0. Therefore as long as r 1

2C00 , then we
have for u 2 Br that

|u| 1

2a
|F (u)|+ 1

2
|u|,

which implies that |u| (1/a)|F (u)|.
In summary, we have constructed a,A, r > 0 such that

a|u| |F (u)| A|u| (8.9)

for all u 2 Br, as was to be shown. We can always reduce the size of r if necessary to ensure
that r R0.

Then recall (8.7), which implies that

|F (I(v))| C̃|F (v)|2

for all v 2 Br. But then (8.9) implies that

|I(v)| M |v|2, (8.10)

where M := C̃A
2

a
for all v 2 Br.

Then by taking ⇢ min
�
r, 1

2M

�
we have

|I(v)| 1

2
|v| (8.11)

for all v 2 B⇢, so in particular I maps B⇢ into itself.
Since I maps Br into itself, it follows that if our initial guess u0 2 B⇢, then uk 2 Br for

all k � 0, and by (8.10), we have

|uk+1| = |I(uk)| M |uk|2, (8.12)

i.e., quadratic convergence.
We will now see why quadratic convergence in this sense implies the stated rate of

convergence of the sequence uk, i.e., the stated bound on |uk � u?|.
By taking logarithms of (8.12) we have

log |uk+1| b+ 2 log |uk|,

where b = logM .
Defining ak by the recursion

ak+1 := b+ 2ak

and a0 := log |u0|, we have inductively that log |uk| ak, so we need only concern ourselves
with the ak.

35

In fact we can solve for ak exactly as

a1 = b+ 2a0, a2 = b+ 2b+ 4a0, a3 = b+ 2b+ 4b+ 8a0, . . .

or in general,

ak = 2ka0 +

k�1X

l=0

2l
!
b

= 2ka0 + (2k � 1)b

= 2k(a0 + b)� b.

Therefore, if a0 + b < 0 we are in good shape.
Indeed, note that since u0 2 B⇢ and ⇢ 1

2B , we have in particular that |u0| 1
2M , so

log |u0| log (1/2)� logM , which implies

a0 + b log(1/2),

so
ak � log(2)2k � b.

Taking ↵ = log(2) and � = �b concludes the proof.

What are the drawbacks of Newton’s method? First observe that computing the Jacobian
DF (u), if we retrace our steps back to the ODE x0(t) = f(x(t), t) that we’re trying to solve,
actually requires us to compute derivatives of f , which is undesirable in general. However,
even more fundamentally, the computational scaling of Newton’s method with respect to the
state dimension d is in general O(d3) due to the cost of the linear solve DF (uk)�1F (uk).
Depending on the problem structure, it may or may not be possible to do better, with
varying amounts of effort. You should roughly think of Newton’s method as unbeatable
for small d but less and less practical as d becomes large. Even when Newton’s method is
completely impractical, it is conceptually important as an ideal that one can wishfully (if
imperfectly) strive to attain by other, scrappier methods.

8.3 Anderson acceleration / DIIS

Consider the general problem of finding a fixed point of some map � : Rd ! Rd. Assume
even that � is a contraction map, so a unique fixed point can be constructed in principle
via fixed-point iteration. Since we have been talking a lot about fixed-point iterations, I
want to tell you about a more sophisticated approach of great generality that is not widely
known in applied math. Indeed I am not confident about the use of it in implicit integrators
for ODEs, but this is a good chance to learn it nonetheless!

Define g : Rd ! Rd by g(u) = �(u)� u, which returns a ‘residual’ vector, satisfying the
condition that g(u) = 0 if and only if �(u) = u, i.e., if and only if u is a fixed point. For
this choice of residual, the following method is known as Anderson acceleration . The
ideas have appeared independently in quantum chemistry, where the framework is known as
direct inversion in the iterative subspace (DIIS) or Pulay mixing and can involve
a more general notion of residual.

This also will be an iterative method, furnishing a sequence of iterates uk ! u? satisfying
�(u?) = u?. However, unlike ordinary fixed-point iteration, DIIS will use the history of
previous iterates as well in the computation of the next iterate.

36

Suppose inductively that u1, . . . , uk have been furnished, and let m k be a ‘history
parameter’ dictating how many previous iterates will be used. Therefore in practice m must
be k-dependent, and we should really write m = mk := min(k,mmax), where mmax is fixed.
However, we will omit the k-dependence of m from the notation. It is also useful before
proceeding to define residual vectors vj := g(uj) for all j.

Consider the (m� 1)-dimensional affine subspace generated by the m vectors

{�(uk�m+1), . . . ,�(uk)} ,

i.e., the ‘suggestions’ made by ordinary fixed-point iteration for the m previous iterates.
Concretely this affine subspace, can be defined as

S :=

(
mX

l=1

cl�(uk�m+l) :
mX

l=1

cl = 1

)
.

We are going to take ‘best’ composite suggestion, based on the last m iterates, from this
affine subspace.

How to define best? Supposing that we are near u?, we are inspired by the first-order
approximation of � , which we write as

�(u) ⇡ A(u� u?) + b,

where A = D�(u?) and b = �(u?) = u?. Note that if
P

m

l=1 cl = 1, then this approximation
yields

mX

l=1

cl�(uk�m+l) ⇡
mX

l=1

clA(uk�m+l � u?) + b

= A

mX

l=1

cluk�m+l � u?

!
+ b

⇡ �

mX

l=1

cluk�m+l

!
,

i.e., linear combination according to the cl can be passed through � approximately as

mX

l=1

cl�(uk�m+l) ⇡ �

mX

l=1

cluk�m+l

!
. (8.13)

Consider the problem

minimize
c2Rm

�����

mX

l=1

clvk�m+l

�����

2

, subject to
mX

l=1

cl = 1, (8.14)

which is a constrained least squares problem that can be solved exactly by a suitable (m+
1)⇥ (m+ 1) matrix inversion.

Now
mX

l=1

clvk�m+l =
mX

l=1

cl�(uk�m+l)�
mX

l=1

cluk�m+l

⇡ �(û)� û,

37

where û :=
P

m

l=1 cluk�m+l, so by solving (8.14) we are approximately solving the problem
of finding �(û) in the (generally nonlinear) submanifold

S̃ :=

(
�

mX

l=1

cluk�m+l

!
:

mX

l=1

cl = 1

)
,

which is very close to its preimage û. (Locally near u?, the map � is invertible, as is
guaranteed provided D�(u?) is invertible. If this is not the case, then our intuition is in big
trouble.) Near u?, we have already argued that S̃ and S can be identified closely via (8.13).
Therefore we propose as our next iterate

uk+1 :=
mX

l=1

cl�(uk�m+l),

which completes the specification of the method.
In summary, for each k, given previous iterates u1, . . . , uk and residuals v1, . . . , vk, we

perform the following:

1. Set m = mk = min(k,mmax).

2. Determine c1, . . . , cm 2 R with sum equal to 1 by solving (8.14).

3. Define next iterate uk+1 :=
P

m

l=1 cl�(uk�m+l) and next residual vk+1 := g(uk+1).

Note that the evaluations �(uj) can be stored, so we only need to perform one additional
evaluation of � per step of this method, no worse than a single step of ordinary fixed-point
iteration. Usually computing � will be the bottleneck, unless m is allowed to become very
large, which often is not a great idea anyway due to stability concerns.

Unfortunately, there aren’t really any clean theorems about the convergence of Ander-
son acceleration in practice, and the results can be somewhat difficult to predict, but the
practical speedup can be quite dramatic for many significant problems.

9 Zero-stability

As we warned earlier and shall now see concretely, consistency does not imply conver-
gence! Let’s see what can go wrong.

All of the methods we introduced above had a natural motivation, but we can write
down consistent methods that look kind of silly. Consider for example the two-step method

xn+2 + 4xn+1 � 5xn = h(4fn+1 + 2fn). (9.1)

Here we have r = 2, ↵0 = �5, ↵1 = 4 , ↵2 = 1, �0 = 2, �1 = 4 , and �2 = 0, so the
conditions of Theorem 13 are satisfied, and the LMM is consistent. We’ll see later that this
method is not convergent!

9.1 Difference equations

Besides consistency, another necessary condition for convergence can be understood by ex-
amining the trivial ODE x0(t) = 0 defined by f ⌘ 0, which admits the constant solution
x(t) = x0 for all t. Here it is convenient to consider the equation over the complex numbers,
i.e., to think of x(t), xn 2 Cd.

38

Applying a general LMM (5.6) to this ODE yields the difference equation

rX

j=0

↵jxn+j = 0, n = 0, . . . , N � r. (9.2)

Consider the ansatz
xn = wnei (9.3)

for a solution, where w is a scalar and ei 2 Rd is the i-th standard basis vector, i = 1, . . . , d.
Plugging into the difference equation (9.2)yields

0 =
rX

j=0

↵jw
n+jei

=

0

@
rX

j=0

↵jw
j

1

Awnei

= ⇢(w)wnei,

where we recall that ⇢ is the first characteristic polynomial of the LMM. Note that if w is
a root of ⇢, then we have a solution. Note that even in the case where w = 0 is a root
(i.e., ↵0 = 0), if we adopt the convention that 00 = 1 so that xn = �n0ei, we still obtain a
nontrivial solution of (9.2).

In fact, provided that ⇢ has N distinct roots, linear combinations of solutions of the form
(9.3) define the general solution of (9.2), as can be verified by a dimension counting argu-
ment. Indeed, note that the set of x = (x0, . . . , xN) solving (9.2) is a subspace. Moreover,
once x0, . . . , xr�1 are fixed, the rest of the xj are determined linearly in terms of these. (Each
xj can be determined from the r preceding values just by noting xn+r = �

P
r�1
j=0 ↵jxn+j .)

However, the values x0, . . . , xr�1 are themselves unconstrained. It follows that the solution
space is r⇥d dimensional, and since the vectors (1, wk, w2

k
, . . . , wN

k
) are linearly independent

(cf. Vandermonde!) for distinct k, the claim follows.
For completeness, what about the case of repeated roots? Suppose that w is a repeated

root, so ⇢(w) = ⇢0(w) = 0. For simplicity let d = 1, and consider a solution of the form

xn = nwn.

Then
rX

j=0

↵jxn+j =
rX

j=0

↵j(n+ j)wn+j

= nwn

rX

j=0

↵jw
j + wn

rX

j=0

j↵jw
j

= nwn⇢(w) + wn+1⇢0(w)

= 0.

Similarly, if w is root of order at least 3, then ⇢00(w) = 0 as well, and

xn = n2wn

39

also defines a solution. Indeed, using the fact already shown that
P

r

j=0 ↵jwj =
P

r

j=0 j↵jwj =
0, we have

rX

j=0

↵jxn+j =
rX

j=0

↵j(n+ j)2wn+j

= wn

rX

j=0

j2↵jw
j

= wn

rX

j=0

j(j � 1)↵jw
j

= wn+2⇢00(w)

= 0.

More generally, if w is a root of order m, then xn = nkwn defines a solution for each
k = 0, . . . ,m� 1.

Note that in the annoying case where w = 0 is a repeated root, our formula xn = nkwn =
�n0 does not furnish any new solutions. Let us inspect this case more closely. Observe that
if 0 is a root of order m, then it must be the case that ↵0 = · · · = ↵m�1 = 0. In fact, for
any k = 0, . . . ,m� 1, then the formula xn = �nk evidently furnishes a solution of (9.2).

Theorem 16. A general complex solution of (9.2) is a complex linear combination of the
r ⇥ d basis solutions of the form

xn =

(
nkwnei, w 6= 0

�nkei, w = 0
, n = 0, . . . , N,

where i = 1, . . . , d, w is an order-m root of the first characteristic polynomial ⇢ of the LMM,
and k = 0, . . . ,m� 1.

Remark 17. To complete the proof of this theorem, we would have to establish that the r
vectors (nkwn)N

n=0, where w is an order-m root of ⇢ and k = 0, . . . ,m�1, are in fact linearly
independent. Note that it suffices to check that they are linearly independent in the case
N = r � 1. We omit a proof of this fact.

9.2 Root condition

Note that if we perfectly initialize (9.2) with x0 = · · · = xr�1 = x(0), then by inspection of

xn+r = �
r�1X

j=0

↵jxn+j

together with the fact that �
P

r�1
j=0 ↵j = 1, we can inductively deduce the solution

xn = x0

for n = 0, . . . , N , which perfectly agrees with the exact solution of the ODE x0(t) = 0.
This corresponds to a linear combination of basis solutions xn = nkwnei, where k = 0

and w = 1. (Indeed, note that 1 is always a root of ⇢ for a consistent LMM!)
However, if we make even a vanishly small initialization error xn = x0 +⇥(hp), we will

in general pick up contributions to our solution of size ⇥(nkwnhp), where k > 1 or w 6= 0,

40

corresponding to a coefficient of size ⇥(hp) for some basis solutions nkwnei. Observe that
the contribution at time N will amount to ⇥(Nk�pwN). This will not be o(1) unless either
|w| < 1 or |w| = 1, k < p.

Now writing x(N)
n to emphasize dependence of the solution on the time step, we normally

say that an LMM is convergent if we have kx(N)
0:N � x(t0:N)k1 ! 0 provided that the

start values are merely consistent in that |x(N)
n � x(nh)| = o(1) for n = 0, . . . , r � 1 as

h! 0. Evidently, given such a loose assumption on the starting value accuracy, we cannot
accommodate a repeated root with |w| = 1. Even with tighter assumptions on the starting
values, we can see that in general a repeated root with |w| = 1 would mess up the order of
accuracy of the method, which is not cool.

Definition 18. We say that the first characteristic polynomial of an LMM satisfies the
root condition if all roots w have modulus at most 1 and all repeated roots have modulus
strictly less than 1. An LMM that satisfies the root condition is called zero-stable .

It can be shown (but we won’t bother to do so formally) that zero-stability is necessary
for an LMM to converge in general. (Just look at the trivial system considered above.) What
we want to prove is that zero-stability, together with consistency, implies convergence. But
first we consider a few examples.

9.3 Examples

9.3.1 Silly example

Let’s show that the silly example (9.1) fails to be zero-stable. Note that in this case

⇢(w) = w2 + 4w � 5 = (w + 5)(w � 1),

hence w = �5 is a root! Evidently |� 5| > 1, so the method is not zero-stable.

9.3.2 Adams-type methods

Next, observe that the Adams-type methods all yield

⇢(w) = wr � wr�1 = wr�1(w � 1),

with roots w = 0 (multiplicity r � 1) and w = 1 (multiplicity 1). Hence the Adams-type
methods are all zero-stable.

9.3.3 Nyström-type methods

Meanwhile, the Nyström-type methods all yield

⇢(w) = wr � wr�2 = wr�2(w2 � 1) = wr�2(w + 1)(w � 1),

with roots w = 0 (multiplicity r � 2), w = 1 (multiplicity 1), and w = �1 (multiplicity 1).
Hence the Nyström-type methods are all zero-stable.

9.3.4 Backward differentiation formulas

The zero-stability of the remaining family of methods introduced above, the BDFs, is more
difficult to ascertain. It can be shown that r-th order BDF is zero-stable for r = 1, . . . , 6,
but not zero-stable for r > 6. This is one of those weird accidental facts, and there does not
appear to be an elegant way to justify it. The best way is probably just to see for yourself
by root-finding.

41

9.4 Dahlquist’s first barrier theorem

We already have some intuition for how increasing the number of steps of a LMM can allow
us to improve the order of accuracy. If we additionally insist on zero-stability (which is
an essential requirement as we have seen), what is the best of order of accuracy possible
for a given number of steps? Dahlquist’s first barrier theorem tells us some fairly tight
constraints.

Theorem 19 (Dahlquist’s first barrier theorem). The order p of an r-step zero-stable
LMM is constrained by the following conditions:

1. p r + 2 if r is even,

2. p r + 1 if r is odd,

3. p r if �r 0 (in particular whenever �r = 0, i.e., whenever the LMM is explicit).

Remark 20. Recall that the r-step Adams-Moulton method has order of accuracy r + 1,
hence saturates the bound for odd r, and the r-step Adams-Bashforth method has order of
accuracy r, hence saturates the bound for explicit LMMs. Meanwhile, Simpson’s rule is a
2-step method with order-4 accuracy, hence saturates the bound in the even case. I am not
sure whether in general there exists an implicit method saturating the bound for arbitrary
even r.

10 Convergence theorem

Our goal in this section is to prove the following important theorem (due essentially to
Dahlquist).

Theorem 21 (Dahlquist). Suppose that f Cp-smooth with uniformly bounded first and
second derivatives and that the r-step LMM (5.6) is both order-p consistent and zero-stable,
furnished with start values xj = x(jh) + O(hp) for j = 0, . . . , r � 1, where x = x(t) is
the exact solution of (1.1). For h = 1/N sufficiently small, there exists a unique solution
(x0, . . . , xN) to the LMM (5.6), and

max
n=0,...,N

|xn � x(tn)| = O(hp).

Remark 22. Given smoothness, having uniformly bounded first derivative is equivalent to
being globally Lipschitz (cf. the manipulations in Section 8.1.2). By similar considerations
as mentioned in earlier theorems, such global boundedness assumptions can be relaxed with
extra effort.

Remark 23. Note that the existence and uniqueness of a solution of the (5.6) for h suf-
ficiently large follows from the discussion of Section 8.1.1. Moreover, the Cp-smoothness
of f guarantees, via repeated differentiaton of the equation x0(t) = f(x(t), t), that x is
Cp+1-smooth. Order-p consistency and the Lagrange error bound then together imply that
|Lhx(t)| C sup

⇠2[0,T]

��x(p+1)(⇠)
�� for some C.

For notational simplicity we will simply consider the scalar case d = 1. There is no
essential difference in proving the case of general d.

42

10.1 The step map

It’s useful to consider the linear map T : Rr ! Rr defined by

T (x0, . . . , xr�1) =

0

@x1, . . . , xr�1,�
r�1X

j=0

↵jxj

1

A ,

which sends a solution of (9.2) at times n, . . . , n+r�1 to the solution at times n+1, . . . , n+r.
(We will use a zero-indexing convention for vectors in this section!) We’ll call
this the ‘step map’ (not a standard name!) since it steps forward the solution of (9.2) by
one increment of time.

In fact the basis solutions introduced in Theorem 16, earlier furnish a generalized eigen-
basis for T . Indeed, let w be a nonzero root, and consider x = (x0, . . . , xr�1) defined
by

xj = wj , j = 0, . . . , r � 1.

Following Theorem 16, x defines the first r values of a solution xj = wj for (9.2). Then
[T (x)]r�1 simply fills in the next value of this solution, i.e., [T (x)]r�1 = wr, and in general
we have

[T (x)]j = wj+1 = wxj , j = 0, . . . , r � 1,

so
T (x) = wx,

i.e., x is an eigenvector with eigenvalue w.
In the case where w = 0 is a root, repeated with order m (so that ↵0 = · · · = ↵m�1 = 0),

it is clear that for any k = 0, . . . ,m� 1, the vector x defined by

xj = �jk, j = 0, . . . , r � 1

is k = 0, . . . ,m� 1 is a null vector for T , i.e., T (x) = 0.
Meanwhile, if w is a repeated root with order m > k and

xj = jkwj , j = 0, . . . , r � 1,

then again following Theorem 16, [T (x)]r�1 fills in the next value of this solution for (9.2),
i.e., [T (x)]r�1 = rkwr, and

[T (x)]j = (j + 1)kwj+1 = w
kX

l=0

✓
k

l

◆
jlwj , j = 0, . . . , r � 1.

At this point it is helpful to label our basis vectors. If w is a root of multiplicity m, then
for k = 0, . . . ,m� 1, we let x(w,k) be defined by

x(w,k)
j

=

(
jkwj , w 6= 0

�jk, w = 0
, j = 0, . . . , r � 1. (10.1)

Then we have precisely shown that

T (x(w,k)) = w
kX

l=0

✓
k

l

◆
x(w,l).

43

In other words, the basis {x(w,k)} block-diagonalizes the operator T , and the m⇥m block
of the matrix associated with the root w can be written

B(w) = w

0

BBBBBBBBBBBB@

1
�1
0

� �2
0

� �3
0

�
· · ·

�
m�1
0

�

1
�2
1

� �3
1

�
· · ·

�
m�1
1

�

1
�3
2

�
· · ·

�
m�1
2

�

1 · · ·
�
m�1
3

�

. . .
...
1

1

CCCCCCCCCCCCA

.

Note that B(w) � wI is nilpotent, implying in particular that the x(w,k) are generalized
eigenvectors, and the eigenvalues of T are precisely the roots of ⇢.

If ⇢ satisfies the root condition, all such blocks B(w) are either 1⇥1 matrices with |w| 1
or possibly larger matrices with |w| < 1. In the latter case, it can be shown (though we
leave this as an exercise) that [B(w)]p ! 0 as p ! 1. In particular, there exists some p
sufficiently large such that kB(w)k 1 for all roots w of ⇢. Accordingly, the matrix of T p

with respect to the generalized eigenbasis has operator norm bounded by 1.
It is useful to introduce a new norm on Cr that is adapted to the generalized eigenbasis.

Indeed, define |||x||| to be the Euclidean norm of the vector coefficients of x in the generalized
eigenbasis. Then let ||| · ||| denote also by extension the associated operator norm. Then
the preceding discussion guarantees that |||T p||| 1 for all p sufficiently large. That’s the
upshot of this whole subsection! In summary, we have proved:

Theorem 24. The eigenvalues of the step map T are precisely the roots of the first char-
acteristic polynomial ⇢ of the LMM (5.6). The vectors x(w,k), where w is a root of ⇢ of
multiplicity m and k = 0, . . . ,m � 1, form a generalized eigenbasis for T , each associated
to the eigenvalue w. If ⇢ satisfies the root condition, then there exists a norm ||| · ||| on Cr

and an associated operator norm (denoted the same) such that for all p sufficiently large,
|||T p||| 1.

10.2 Warm-up: inhomogeneous linear difference equation

Let us now consider the following inhomogeneous generalization of the difference equation
(9.2):

rX

j=0

↵jxn+j = gn, n = 0, . . . , N � r, (10.2)

where gn is some fixed right-hand side, independent of the xn. We can solve (10.2) using
the step map. Indeed, note that given all preceding values, we can solve for xn+r as

xn+r = gn �
r�1X

j=0

↵jxn+j = gn � [T (x(n))]r�1,

where x(n) := (xn, . . . , xn+r�1). More compactly, we have

x(n+1) = T (x(n)) + g(n+1),

where we define
g(n+1) = (0, . . . , gn), n = 0, . . . , N � r.

44

It is convenient also to define
g(0) := x(0).

Then given an initialization of starting values g(0) = x(0) = (x0, . . . , xr�1), we obtain
sequentially:

x(1) = T (g(0)) + g(1),

x(2) = T 2(g(0)) + T (g(1)) + g(2),

x(3) = T 3(g(0)) + T 2(g(1)) + T (g(2)) + g(3),

. . . ,

and in general we have

x(n) =
nX

k=0

Tn�k(g(k)), n = 0, . . . , N � r + 1, (10.3)

which defines an exact solution for (10.2).
Now is the time to remember the hidden mesh-dependence (i.e., N -dependence or h-

dependence) of the scheme. Suppose

max
n=0,...,r�1

|xn| = O(hp), max
n=0,...,N�r

|gn| = O(hp+1)

as h ! 0. We have perturbed the equation (9.2) by adding an O(hp+1)-small right-hand
side, and we are considering an O(hp)-small initialization. The goal is to show that the
solution is also O(hp)-small.

Indeed, note that from (10.3) that

|||x(n)|||
nX

k=0

|||Tn�k||| · |||g(k)|||.

Suppose ⇢ satisfies the root condition, so by Theorem 24

C := sup
k=0,1,2,...

|||T k|||

is finite. (The fancy norm is not really necessary here, but it will be useful later.)
It follows by triangle inequality that

max
n=0,...,N

|||x(n)||| C |||x(0)|||+ CN max
k=1,...,N�r+1

|||g(k)||| = O(hp),

where we have used the fact that all finite-dimensional norms are equivalent. Indeed, said
fact then further implies that

max
n=0,...,N

|x(n)| = O(hp),

as desired.

10.3 Getting warmer: linear case

Now consider the case of a linear ODE defined by f(x, t) = �x. We want to show that the
LMM (5.6) is convergent in this case, given consistency and zero-stability. More specifically,
given order-p consistency we want to show order-p accuracy of the solution.

45

Recall the defining equation for the LMM (5.6):

rX

j=0

↵jxn+j = �h
rX

j=0

�jxn+j , n = 0, . . . , N � r,

let x = x(t) be the true solution, and suppose |xn � x(nh)| = O(hp) for n = 0, . . . , r � 1.
(Note that there is a hidden dependence of the solution xn on the mesh, i.e., on N or
equivalently on h.)

Now the whole point of (order-p) consistency is that if we plug in the true solution to the
defining equation for the LMM, it holds with vanishingly small error, specifically O(hp+1)
error. To wit

rX

j=0

↵jx(tn+j) = �h
rX

j=0

�jx(tn+j) + gn,

where maxn=0,...,N�r |gn| = O(hp+1).
Now define an error displacement ✏n := xn � x(tn). (Note that ✏n is to be distinguished

from the absolute error notation En = |✏n| considered earlier in the course. We’ll still
call it the ‘error.’) Observe that the error satisfies a linear difference equation with small
right-hand side, namely:

rX

j=0

(↵j � �h�j) ✏j = gn, n = 0, . . . , N � r.

This is a small variation on (10.2) in that the shift map itself has been perturbed by O(h).
Indeed define a perturbed a shift map Th associated to the perturbed polynomial ⇢h(w) =P

r

j=0(↵j � �h�j)wj . It is easy to see that Th = T +Bh, where Bh = O(h) is a linear map.
Following (10.3), we have a solution

✏(n) =
nX

k=0

Tn�k

h
(g(k)), n = 0, . . . , N � r + 1, (10.4)

where ✏(n) := (✏n, . . . , ✏n+r�1), and

g(n) =

(
(0, . . . , gn�1), n = 1, . . . , N � r + 1

(✏0, . . . , ✏r�1), n = 0.

Now by Theorem 24 there exists some m, which shall now remain fixed (even as h is
changed), such that |||Tm||| 1. Then expand

Tm

h
= (T +Bh)

m = Tm +
mX

k=1

✓
m

k

◆
Tm�kBk

h
,

and note that the remainder term of the sum is O(h), so there exists some c > 0 such that

|||Tm

h
||| 1 + ch

for all h sufficiently small.
Then for any nonnegative integer M , we can always write M = qm+ l, where q M/m

and the remainder l 2 {0, . . . ,m� 1}. Therefore

TM

h
= T l

h
(Tm

h
)q ,

46

so
|||TM

h
||| |||Th|||l |||Tm

h
|||q.

Since l 2 {0, . . . ,m � 1} and m is fixed, |||Th|||l is bounded by some constant A for all h
sufficiently small. Then

|||TM

h
||| A(1 + ch)q A(1 + ch)M/m A(ech)M/m = AeaMh,

where we have defined a new constant a := c/m.
This bound is key because as long as M N , we still have a constant bound

|||TM

h
||| C := AeaT .

Then plugging into (10.4), we obtain

|||✏(n)||| |||Tn||| · |||g(0)|||+
nX

k=1

|||Tn�k

h
||| · |||g(k)|||

 C|||g(0)|||+ CN max
k=1,...,N

|||g(k)|||.

By norm equivalence and our bounds on ✏0, . . . , ✏r�1 as well as our uniform bound over
g0, . . . , gn, we have in turn that

|||g(0)||| = O(hp), max
k=1,...,N

|||g(k)||| = O(hp+1),

and it follows that
max

n=0,...,N
|||✏(n)||| = O(hp).

By norm equivalence we conclude that

max
n=0,...,N

En = O(hp),

which is precisely convergence of order p, as desired.

10.4 Lipschitz case

Once again we want to obtain a difference equation for the error ✏n = xn � x(nh). Order-p
consistency (cf. Remark 23) implies that

rX

j=0

↵jx(tn+j) = h
rX

j=0

�jf(x(tn+j), tn+j) + g̃n, n = 0, . . . , N � r.

where maxn |g̃n| = O(hp+1). Subtracting from the LMM (5.6) we have
rX

j=0

↵j✏n+j = h
rX

j=0

�jdn+j + g̃n, , n = 0, . . . , N � r. (10.5)

where
dn := f(xn, tn+j)� f(x(tn), tn).

In Section 10.3, we were able to simplify the expression for dn dramatically using the
linearity of f . We will mimic this as best as we can via linearization! Indeed, for all
n = 0, . . . , N , we can approximate

dn = �n✏n + bn,

47

where
�n := @xf(x(tn), tn), bn := dn � �n✏n,

and
|bn|

1

2
k@2

x
fkL1 |✏n|2 (10.6)

by the Lagrange error bound.
Then we can rewrite (10.5) as

rX

j=0

(↵j � �n+j�jh) ✏n+j = g0
n
, n = 0, . . . , N � r, (10.7)

where

g0
n
:= h

rX

j=0

�jbn+j + g̃n, n = 0, . . . , N � r.

Now the inhomogeneous difference equation is ‘non-autonomous’ in the sense that our
perturbation to the step map T depends on n via �n. This is not actually a significant
issue. The more annoying thing is that the RHS of (10.7) now includes a garbage term bn
that depends on the solution {xn} (or, equivalently, on {✏n}), via the dependency xn !
{dn,�n} ! bn, and we have no a priori control over it. The fact that the that the bn are
quadratically small (cf.(10.6)) in the error will allow us to massage away this difficulty via
fixed-point iteration.

We will define a map that takes in a candidate solution {yn} and spits out an updated
candidate {y0

n
} such that the map has fixed point {xn}. First the map defines gn in terms of

{yn} as we defined g0
n

terms of {xn} above. Then the map solves the appropriate difference
equation for an error displacement {�n}, which in turn determines a new candidate solution
{yn}. We want to obtain control over both stages of this map. This is accomplished in the
following two lemmas.

Lemma 25. The map G = G(N) : y0:N 7! g0:N�r defined by

gn = h
rX

j=0

�j [f(yn+j , tn+j)� f(x(tn+j), tn+j)� @xf(x(tn+j), tn+j) · (yn+j � x(tn+j))] + g̃n

is Lipschitz with respect to the infinity norm. If we restrict the map G to the ball

Br := B(N)
r

= {y0:N : ky0:N � x(t0:N)k1 r},

the Lipschitz constant, which we call Lh,r, is O(rh).

Proof (of lemma). First compute

[G(y0:N)�G(z0:N)]n = h
rX

j=0

�j [f(yn+j , tn+j)� f(zn+j , tn+j)� @xf(x(tn+j), tn+j) · (yn+j � zn+j)] .

In order to apply Lagrange error bounds we rewrite as

[G(y0:N)� G(z0:N)]n = h
rX

j=0

�j [f(yn+j , tn+j)� f(zn+j , tn+j)� @xf(zn+j , tn+j) · (yn+j � zn+j)]

+ h
rX

j=0

�j [@xf(x(tn+j), tn+j)� @xf(zn+j , tn+j)] · (yn+j � zn+j).

48

Now
f(yn, tn)� f(zn, tn)� @xf(zn, tn) · (yn � zn) = O(|yn � zn|2)

and
@xf(x(tn), tn)� @xf(zn, tn) = O(|x(tn)� zn|)

by the assumption of uniform boundedness on @2
x
f , so it follows that

kG(y0:N)� G(z0:N)k1 Ch (ky0:N � z0:Nk1 + kx(t0:N)� z0:Nk1) ky0:N � z0:Nk1

for a suitable constant C independent of n,N . Now

ky0:N � z0:Nk1 ky0:N � x(t0:N)k1 + kz0:N � x(t0:N)k1,

so if y0:N , z0:N 2 Br, then

kG(y0:N)� G(z0:N)k1 3Chrky0:N � z0:Nk1,

and the lemma is proved.

Lemma 26. Suppose that �n = �(N)
n = O(1) uniformly in n and N . (Superscript de-

pendence on N will be omitted from the notation for visual clarity.) Then the linear map
S = S(N) from the starting values and RHS (�0:r�1, g0:N�r) to the full solution �0:N of

rX

j=0

(↵j � �n+j�jh) �n+j = gn, n = 0, . . . , N � r (10.8)

is bounded uniformly in N in the sense that there exists C indpendent of N such that

kS[�0:r�1, g0:N�r]k1 C (k�0:r�1k1 +Nkg0:N�rk1) .

Proof (of lemma). The solution of (10.8) proceeds by analogy to (10.4), except that the
perturbed step map is now time-dependent, Tn := T + Bn, where the Bn are linear maps
(implicitly h-dependent) with maxn kBnk = O(h). Indeed, with notation as in the preceding
(mutatis mutandi) we obtain

�(n) =
nX

k=0

Tn · · ·Tk+2Tk+1(g
(k)), n = 0, . . . , N � r + 1,

and we can straightforwardly generalize our preceding analysis to obtain the bound

|||�(n)||| C̃|||g(0)|||+ C̃N max
k=1,...,N�r+1

|||g(k)|||

for some C̃ indpendent of n,N . Recall the notation g(0) = (�0, . . . , �r�1). By norm equiva-
lence the lemma follows.

Proof of Theorem 21. Define the map

� = �(N) : y0:N 7! x(t0:N) + S [✏0:r�1,G(y0:N)] .

From the preceding two lemmas it follows that

�(y0:N)� �(z0:N) = S[✏0:r�1,G(y0:N)]� S[✏0:r�1,G(z0:N)]

= S[0,G(y0:N)� G(z0:N)],

49

so

k�(y0:N)� �(z0:N)k1 CNkG(y0:N)� G(z0:N)k1
 CNLr,hky0:N � z0:Nk1,

as long as y0:N , z0:N 2 Br. Now CNLr,h = O(r), so let r be sufficiently small (independent
of N) such that � is Lipschitz on Br with Lipschitz constant 1/2.

We claim that then for h sufficiently small, � maps Br into itself. To see this, suppose
y0:N 2 Br. Then we want to show that k�(y0:N) � x(t0:N)k1 r. First we can apply the
triangle inequality:

k�(y0:N)� x(t0:N)k1 k�(y0:N)� �(x(t0:N))k1 + k�(x(t0:N))� x(t0:N)k1

 1

2
ky0:N � x(t0:N)k+ k�(x(t0:N))� x(t0:N)k1

 r

2
+ k�(x(t0:N))� x(t0:N)k1. (10.9)

But

k�(x(t0:N))� x(t0:N)k1 = kS[✏0:r�1,G(x(t0:N))k1
 C (k✏0:r�1k1 +Nkg̃nk1) ,

from which it follows that

k�(x(t0:N))� x(t0:N)k1 = O(hp). (10.10)

Then by plugging into (10.9), we see that k�(y0:N)� x(t0:N)k1 r, i.e., �(y0:N) 2 Br,
provided h is sufficiently small, and the claim that � maps Br into itself is proved.

Then the Banach fixed point theorem (Theorem 3) furnishes the existence of a unique
fixed point x?

0:N of � in Br. But such a fixed point is precisely a solution of (5.6), hence by
uniqueness is is our LMM solution x0:N .

Moreover, since x(t0:N) 2 Br, Banach’s fixed point theorem allows us to write

x0:N = lim
k!1

�k(x(t0:N)),

and by applying the triangle inequality to a telescoping sum obtain

kx0:N � x(t0:N)k1
1X

k=0

k�k+1(x(t0:N))� �k(x(t0:N))k1

1X

k=0

1

2k
k�(x(t0:N))� x(t0:N)k1

= 2k�(x(t0:N))� x(t0:N)k1,

which controls the distance between our LMM solution and the true solution in terms of the
error incurred by a single application of the map �. We have already bounded this error in
(10.10), which implies

kx0:N � x(t0:N)k1 = O(hp),

completing the proof of the theorem.

50

11 Milne’s device and predictor-corrector methods

Milne’s device refers to a trick that allows us to use two LMMs of the same order of accuracy
to obtain an a posteriori estimate of the local truncation error, which may be far tighter
than any a priori bound we could derive on paper. The device also allows us to extrapolate
a better solution of one higher order of accuracy. The idea of Milne’s device can be applied
in the specific context of a predictor-corrector method, which can also be viewed as an
approximation to the full solution of an implicit method, equipped via Milne’s device with
an a posteriori estimate on the local error.

11.1 Milne’s device

Suppose we have two r-step LMMs defined via coefficients ↵j ,�j and ↵̃j , �̃j , respectively,
for j = 0, . . . , r. (As we shall see, sometimes it is convenient to view an (r � 1)-step LMM
as an r-step LMM by padding the coefficients with zeros for j = 0.) We will denote the
solutions of these by {xn} and {x̃n}, and for the purpose of estimating the error that we
accrue in a single step of the LMM, assume that xj = x̃j = x(tj) for j = n, . . . , n+ r � 1.

Then using the fact that

Lhx(t) = chp+1x(p+1)(t) +O(hp+2),

where c := Cp+1 6= 0 is the error constant of the first LMM, and subtracting equations from
the (5.6), we see that

x(tn+r)� xn+r = h [f(x(tn+r), tn+r)� f(xn+r, tn+r)] + chp+1x(p+1)(t) +O(hp+2),

but since x(tn+r) = xn+r +O(hp+1), the first term is merely O(hp+2), and we have

x(tn+r)� xn+r = chp+1x(p+1)(t) +O(hp+2),

so
✏n+r ⇡ �chp+1x(p+1)(t),

where from now on, ‘⇡’ indicates equality up to O(hp+2) error.
Note that even though we can compute the error constant c a priori, we cannot compute

x(p+1)(t) a priori since we don’t know the exact solution! So the leading order contribution
to the error is unknown to us, practically. However, if we let c̃ denote the error constant of
the second LMM, we also have

x(tn+r)� x̃n+r ⇡ c̃hp+1x(p+1)(t),

and we can subtract equations to obtain

x̃n+r � xn+r ⇡ (c� c̃)hp+1x(p+1)(t) ⇡ (c� c̃)

✓
�✏n+r

c

◆
.

Assuming that c 6= c̃, we can then solve for

✏n+r ⇡
c

c� c̃
(xn+r � x̃n+r) ,

and likewise
✏̃n+r ⇡

c̃

c̃� c
(x̃n+r � xn+r).

51

We can use these formulas to estimate the error accumulated in one time step of either
LMM. A natural criterion to meet is

✏n+r h�,

where � is some target tolerance for the error accumulation per unit time. If we do not meet
the tolerance, we decrease h until we do. Adjusting the step size on the fly is annoying for
LMMs but can be achieved via polynomial interpolation of previously computed values.

Note that since x(tn+r) = xn+r � ✏n+r we can extrapolate an improved solution which
now enjoys one order higher of LTE via

x̂n+r := xn+r +
c

c� c̃
(x̃n+r � xn+r) .

This procedure, known as local extrapolation , is harder to analyze and may be a bit risky
from the point of view of stability.

11.2 Predictor-corrector methods

Now for something completely different (but not really). Suppose we want to implement an
implicit LMM such as the r-step Adams-Moulton method but we are lazy and don’t want
to solve a bunch of nonlinear equations. Suppose this method is p-th order accurate, and
recall we need to solve

xn+r = �
r�1X

j=0

↵jxn+j + h
r�1X

j=0

�jfn+j + h�jf(xn+r, tn+r)

for xn+r. The difficulty is the xn+r appearing on the right-hand side. If we just swapped it
out for a different p-th order accurate guess x̃n+r for x(tn+r), obtained by alternative means,
then the implicit method would become explicit. If our original LMM is the (r � 1)-step
Adams-Moulton method, we could use, for example, the r-step Adams-Bashforth method
to obtain the guess x̃n+r. In this case, the Adams-Bashforth method would be playing the
role of predictor , and the update

xn+r = �
r�1X

j=0

↵jxn+j + h
r�1X

j=0

�jfn+j + h�jf(x̃n+r, tn+r)

defines a so-called predictor-corrector method .
Although the resulting method is not an LMM, we can still define the LTE as the

amount by which the true solution {x(tn)} fails to the satisfy the scheme. By exchanging
f(xn+r, tn+r) ⇡ f(x̃n+r, tn+r), since the LTE for x̃n+r is already only O(hp+1), we see that
the predictor-corrector method has an LTE that differs from that of the original implicit
LMM by O(hp+2). Therefore, both the order and the error constant of the original method
and the predictor-corrector method are the same!

It follows that Milne’s device (applied to the pair of predictor and predictor-corrector
methods) can be used just as in the preceding subsection, furnishing a local error estimate
for the predictor-corrector method.

It’s nice to have an error estimate, but why bother with an implicit method at all? So
far we don’t really have any theoretical tools to distinguish between methods with the same
order of accuracy. The notion of absolute stability, which addresses this gap, will be the
topic of the next section. (Implicit methods can offer better stability properties than explicit
methods, and predictor-corrector methods can split the difference.)

52

12 Stiff systems and absolute stability

Consider the scalar ODE
x0(t) = a(cos(t)� x(t)), (12.1)

where a > 0. Intuitively we can think of the equation as driving x(t) toward the fixed
pattern cos(t), and the time it takes for the solution to relax to this pattern become smaller
as a!1.

In fact, we can solve the ODE exactly as

x(t) =
a sin(t)

a2 + 1
+

a2 cos(t)

a2 + 1
+ ce�at,

where c is a constant determined by the initial condition. If the initial condition is x0 = 0,
then we can solve for c = � a

2

a2+1 , hence

x(t) =
a

a2 + 1

�
sin(t) + a cos(t)� ae�at

�
.

Evidently as t!1, the solution relaxes with exponential rate a to a sinusoidal pattern with
fixed frequency. Moreover, in the limit a!1, the time scales of oscillation and relaxation
separate, and we see that x(t)! cos(t).

As we approach the limit a!1, this becomes a prototypical example of a stiff system.
Colloquially such systems are systems with several internal time scales of different orders
of magnitude. Many schemes (and all explicit schemes) collapse completely when presented
with a stiff system, unless the time step is taken to be as small as the fastest time scale
inherent to the system. But if we really don’t care about resolving the fastest time scales,
we may be able to get away with a much longer time step. The notion of absolute stability
addresses this capacity.

I lied....The real prototypical example of a stiff system is a poorly conditioned linear
system, let’s see how it relates to (12.1). Consider the y(t) = x(t) � cos(t), which satisfies
the ODE

y0(t) = �ay(t) + sin(t),

with an inhomogeneous contribution sin(t) that is now independent of a. As we have seen
conceptually in the proof of the Dahlquist theorem, to understand the propagation of error
for a linear ODE with an inhomogeneous contribution, it really suffices to consider the
homogeneous ODE

y0(t) = �ay(t).
The general study of linear systems of ODEs can essentially be reduced to this scalar case
via diagonalization, as we now describe.

12.1 Linear systems of ODEs

Consider a general linear system of ODEs

x0(t) = Ax(t).

In fact an explicit solution is available as

x(t) = exp(At)x0,

where exp(·) denotes the matrix exponential. This solution can be verified by term-by-term
differentiation of the power series expansion for the matrix exponential.

53

A more concrete representation of the solution can be obtained by considering a Jordan
decomposition for A. For simplicity, let’s just assume the generic condition that A is diag-
onalizable (though possibly only over the complex numbers), so A = P⇤P�1, where P is
invertible and ⇤ = diag(�1, . . . ,�d) is diagonal, though both are possibly complex. Then by
considering the transformation y(t) = P�1x(t) (which operation also commutes with any
reasonable scheme), we obtain

y0(t) = P�1x0(t) = P�1Ax(t) = ⇤P�1x(t) = ⇤y(t),

i.e.,
y0(t) = ⇤y(t).

Note that the dynamics for y1, . . . , yd decouple entirely after this transformation as

y0
i
(t) = �iyi(t),

which can be solved exactly as
yi(t) = e�ityi(0).

It follows that limt!1 x(t) = 0 if and only if Re(�i) < 0 for all i = 1, . . . , d. In general,
even if A is not diagonalizable, it can be verified that limt!1 x(t) = 0 if and only if Re(�) < 0
for all eigenvalues � of A.

12.2 Absolute stability

Ideally we want numerical schemes that conserve this long-time behavior. We can always
imagine the solution of a LMM as being defined for arbitrarily many time steps with no
final time. As such we can view any r-step LMM as furnishing a sequence {xn}1n=0, given
only the start values x0, . . . , xr�1.

Definition 27. We say that a LMM is absolutely stable (for given h,�) if the solution
{xn}1n=0 satisfies limn!1 xn = 0 whenever the LMM is applied with time step h to the
scalar ODE x0(t) = �x(t) with arbitrary starting values. We will say that an LMM is
weakly absolutely stable if the sequence {xn}1n=0 remains bounded.

We can unpack this a bit. The LMM in this case reads as

rX

j=0

↵jxn+j = h�
rX

j=0

�jxn+j ,

or equivalently
rX

j=0

⇣
↵j � ĥ�j

⌘
xn+j = 0,

where we have defined ĥ = h�.
Remark 28. In our discussion of absolute stability h and � will always appear together
jointly within the expression h�, so it is useful to think of ĥ as the essentially important
quantity, rather than h and � individually. Hence we will say that an LMM is absolutely
stable for given ĥ in the future.

54

Our previous analysis of this kind of difference equation yields the result that limn!1 xn =
0 for all choices of starting values if and only if the ‘step map’

Th�(x0, . . . , xr�1) =

0

@x1, . . . , xr�1,�
r�1X

j=0

↵j � ĥ�j

1� ĥ�r
xj

1

A

has eigenvalues strictly less than one in magnitude.
Note that this step map is the same as the one considered before, with coefficients

↵̃j :=
↵j � ĥ�j

1� ĥ�r

in the place of the ↵j defining T .
Hence the eigenvalues are precisely the roots of the polynomial

P
r

j=0 ↵̃jwj , which are
the same (multiplying through by 1� ĥ�r) as the roots of the stability polynomial p = p

ĥ

defined by

p(w) :=
rX

j=0

(↵j � ĥ�j)w
j .

Hence we have shown:

Theorem 29. An LMM is absolutely stable for given ĥ if and only if all the roots of the
corresponding stability polynomial are strictly less than one in magnitude. Meanwhile it is
weakly absolutely stable if the stability polynomial satisfies the root condition.

Definition 30. The region of (weak) absolute stability for an LMM is the set of values
ĥ 2 C for it is (weakly) absolutely stable. The interval of absolute stability for an LMM
is the largest interval of the form (ĥ0, 0) where ĥ0 < 0 such that the LMM is absolutely
stable on the entire interval.

Remark 31. Note that an LMM is zero-stable if and only if the region of weak absolute
stability contains the origin.

Exercise: compute the absolute stability regions for explicit and implicit Euler, the
trapezoidal rule, and the midpoint/leapfrog method.

12.3 Computing arbitrary absolute stability regions

Although absolute stability regions can be computed analytically for a few methods (cf. the
preceding exercise), in general it is not possible to do so. There is nonetheless a foolproof
computational approach for determining absolute stability regions called the boundary
locus method . This approach, as the name suggests, directly seeks the boundary of the
absolute stability region, which is defined by the condition that at least one of the roots w
of the stability polynomial p

ĥ
has modulus |w| = 1. Any such root can be written w = ei✓

for ✓ 2 [0, 2⇡).
Therefore, sweeping over ✓ 2 [0, 2⇡), we plug w = ei✓ into p

ĥ
(w) = 0 and then solve for

ĥ = ĥ(✓), which we can view as a function of ✓. The map ✓ 7! ĥ(✓) defines a curve in C,
called the boundary locus. The curve may self-intersect, dividing the complex plane into
possibly several connected components. For ĥ in the interior of each connected component,
no roots of p

ĥ
have modulus |w| = 1, and we can check whether that component belongs to

the absolute stability region just by testing a single point.

55

Figure 12.1: The solid curve is the boundary locus for (12.2), i.e., the set of points ĥ such
that the stability polynomial p

ĥ
has a root of modulus 1. The shaded region is the absolute

stability region.

For example, consider the LMM

xn+2 � xn+1 = hfn. (12.2)

The stability polynomial is
p
ĥ
(w) = w2 � w � ĥ.

Plugging w = ei✓ into the equation p
ĥ
(w) = 0 and solving for ĥ:

ĥ(✓) = e2i✓ � ei✓.

This is already something we can plot (see Figure 12.3), though it is of course possible to
write out the real and imaginary parts of ĥ(✓) separately.

Note: In general, since p
ĥ
(w) depends linearly on ĥ, it is always possible to solve

uniquely for ĥ = ĥ(✓).
Evidently the curve ✓ 7! ĥ(✓) depicted in Figure 12.3 divides the complex plane into

three connected components, so to determine the absolute stability region is suffices to
check one point in the interior of each for absolute stability and then shade accordingly.
Remark 32. Note that determining weak absolute stability regions is technically a bit more
subtle, since each point on the boundary locus must be checked for the presence of repeated
roots of modulus 1.

12.4 A-stability

Definition 33. An LMM is A-stable if its region of absolute stability includes the entire
(strict) left half plane {ĥ 2 C : Re(ĥ) < 0}.

A-stability is desirable because it implies (for a linear system of ODEs) that if the true
solution satisfies x(t) ! 0 as t ! 1, then the scheme solution satisifies the analogous
condition that xn ! 0 as n!1.

56

We have seen (through exercises above) that implict Euler and the trapezoidal rule are
both A-stable. (Their absolute stability regions are {ĥ : |ĥ� 1| > 1} and {ĥ : Re(ĥ) < 1},
respectively.)

A-stability is actually an extremely restrictive condition! To wit:

Theorem 34 (Dahlquist’s second barrier theorem).

1. Any explicit LMM is not A-stable.

2. The order of accuracy of an A-stable LMM is at most 2.

Remark 35. As verified in our above exercise, the absolute stability region of the trapezoidal
rule is precisely {ĥ : Re(ĥ) < 0}, hence the trapezoidal rule is in particular A-stable. Also
recall that the trapezoidal rule is order-2 accurate. It is not the unique order-2 accurate
A-stable LMM, but it is the best one in a sense that is also clarified by Dahlquist’s second
barrier theorem, though omitted here. In summary, if you demand A-stability and second-
order accuracy, use the trapezoidal rule. In the setting of PDEs, the trapezoidal rule defines
the Crank-Nicolson scheme, which is essentially the default approach for parabolic PDE
such as the heat equation. A-stability is an important requirement in this case because the
discretization of the heat equation becomes infinitely stiff as it is refined.

The proof is outside the scope of the course.

12.5 A0-stability

Definition 36. An LMM is A0-stable if its region of absolute stability includes the entire
(strictly) negative real axis {ĥ 2 C : Re(ĥ) < 0, Im(ĥ) = 0}.

The condition of A0-stability is looser than A-stability and Dahlquist’s second barrier
theorem does not preclude higher-order A0-stable schemes. Indeed, as you can verify using
the technique introduced below, the zero-stable BDF methods (i.e., the BDF methods of
order up to 6) are all A0-stable, though they are only A-stable up to order 2.

12.6 Absolute stability and linear systems of ODEs

The following theorem guarantees that the notion of absolute stability for the scalar test
problem can be lifted to linear systems of ODEs.

Theorem 37. Assume that A is diagonalizable, and let {xn}1n=0 be furnished by a LMM
with step size h such that h� lies in the region of absolute stability for all eigenvalues � of
A. Then limn!1 xn = 0.

Proof. Write our LMM as
rX

j=0

↵jxn+j = h
rX

j=0

�jfn+j .

In our case we have
rX

j=0

↵jxn+j = h
rX

j=0

�jAxn+j . (12.3)

Diagonalize A = P⇤P�1, where ⇤ = diag(�1, . . . ,�d). By assumption h�i lies in the region
of absolute stability.

57

Then left-multiplying (12.3) by P and writing I = P�1P yields

rX

j=0

↵jPxn+j = h
rX

j=0

�jPAP�1Pxn+j ,

i.e.,
rX

j=0

↵jyn+j = h
rX

j=0

�j⇤yn+j

where yn := Pxn. It is useful further to define the entries via yn = (yn,1, . . . , yn,d).
We see that {yn}1n=0 solves the same LMM applied to the system y0(t) = ⇤y. It follows

that {yn,i}1n=0 solves the same LMM applied to the scalar ODE y0
i
(t) = �iyi for each i. But

since h�i lies in the region of absolute stability, it follows that limn!1 yn,i = 0 as n ! 1
for each i, hence limn!1 yn = 0, hence limn!1 xn = 0.

12.7 Stiff systems

The theorem suggests that in order to guarantee absolute stability for a given linear
system of ODEs (defined by the matrix A), we must choose h sufficiently small such that
h� lies in the region of absolute stability region for all eigenvalues � of A.

Consider the case, for example, where all the eigenvalues � of A satisfy Re(�) < 0. In
this case we hope for our scheme to be absolutely stable for the corresponding linear system
of ODEs. If we order the eigenvalues increasingly (with multiplicity) by real part, we see
that the fastest timescale present in the problem is 1/Re(��1), while the slowest timescale
is 1/Re(��d). In the case where the stiffness ratio

S :=
Re(�1)

Re(�d)
� 1,

then we say that our system is stiff (though for general nonlinear systems, such a notion
is tricky to define precisely), due to the simultaneous presence of timescales that differ by
many orders of magnitude.

If our scheme is not A-stable, then in general we will have to scale h ⇠ 1
Re(��1)

, i.e.,
on the order of the smallest timescale of the problem, in order to guarantee stability, while
we might for example only care about features of the solution on the longest timescale
T ⇠ 1

Re(��d)
. In this case, we will need to run our scheme for N ⇠ S time steps in order to

resolve the features of interest without sacrificing stability.

58

Differential equations won’t help you
much in the design of aeroplanes—not
yet, anyhow.

N. Shute

Part III

Runge-Kutta methods
Runge-Kutta (RK) methods are the major alternative to LMMs. They are all one-step
methods in the sense that the next value xn+1 is produced using only xn and none of the
preceding values xn�1, xn�2,

However, RK methods are multi-stage methods in that several ‘intermediate values’
for f(x(t)), t 2 [tn, tn+1] are produced before the ultimate value xn+1 is computed using a
weighted average of them.

13 The general RK method

In general, a RK method can be expressed as

xn+1 = xn + h
sX

i=1

biki, (13.1)

where s is the number of stages, and k1, . . . , ks 2 Rd are defined via the equations

ki = f

0

@xn + h
sX

j=1

aijkj , tn + cih

1

A , i = 1, . . . , s. (13.2)

Thus an RK method is completely specified by the number s of stages, the s⇥s RK matrix
A = (aij), the s-dimensional vector of weights b = (bi), and the s-dimensional vector of
nodes c = (ci). The data specifying an RK method can be collected in a Butcher tableau
as:

c A

b>

Intuitively the values xn,i := xn + h
P

s

j=1 aijkj can often be viewed as intermediate
guesses for the value of x(t) at intermediate times tn,i := tn + cih. Under this view the
values ki are guesses for the slopes f(x(t)) at intermediate time tn,i.

13.1 The Runge-Kutta iteration map

Assuming the existence of a unique or canonically defined solution of (13.2) (a system of
s⇥ d nonlinear equations in s⇥ d unknowns), the RK method (13.1)-(13.2) can be thought
of as specifying a map R : Rd ! Rd (not a standard notation!) which sends xn 7! xn+1.

59

Technically, we can view the map as depending on the parameters h (the step size) and
t (the current time) as Rh,t, so

xn+1 = Rh,tn(xn).

In the autonomous case, the depenence on t is trivial. In most of our discussions of RK meth-
ods, the dependence on h and t will be omitted from the notation for notational simplicity,
as the meaning shall be clear from context.

13.2 Sum rule

It is natural (but not necessary) to impose the condition

ci =
sX

j=1

aij , or c = A1 (13.3)

because this guarantees that the answer yielded by the RK method for a non-autonomous
system is independent of whether we choose to

1. solve directly, or

2. first reduce to the autonomous case via the reduction described in Section 1.1 (exercise),
then solve the resulting autonomous system, and finally recover the solution to the
original system from this solution.

Indeed, imagine for the sake of argument that kj = k for some k and all j = 1, . . . , s. Then
under the condition 13.3, xn,i = xn + (cih)k, which makes intuitive sense if we view xn,i as
the solution at time tn,i = tn + cih.

13.3 Explicit RK methods

In general 13.2 specifies a system of s⇥ d nonlinear equations in s⇥ d unknowns. Note that
when h is small, the equations are a small perturbation of the trivial system of equations
ki = f(xn), i = 1, . . . , s, and implicit function theorem arguments should reassure us.

However, it is worthwhile to consider the special case of explicit RK methods, where it
is not necessary to solve equations at all because each ki can be computed directly in terms
of only the kj for j < i. Evidently, to ensure this, we must have aij = 0 for j � i, i.e., the
RK matrix must be strictly lower triangular .1 (Technically the RK matrix only needs
to be strictly lower triangular after some permutation of the indices, but we can assume this
WLOG.)

In this case, if we insist on the sum rule 13.3, we must have c1 = 0. This is not a
necessary requirement for explicit methods, but we will always assume it.

13.4 Local truncation error, consistency, and convergence

The local truncation error (LTE) for a RK method can be defined like before as the
discrepancy in the defining equations that occurs when we plug in the true solution x(t).
The precise definition here is more reminiscent of the case of Taylor series methods since
those are also one-step methods.

1The case where the RK matrix is merely lower triangular corresponds to the category of diagonally
implicit RK , or DIRK , methods, which are implicit but only require the solution of a sequence of s
systems of d equations, rather than a fully general system s⇥ d equations.

60

Indeed, consider taking xn := x(tn), and then determine xn+1 = R(xn) from xn accord-
ing to the RK method (13.1)-(13.2). The LTE ⌧n at the n-th time step is then defined as
the discrepancy between the true solution x(tn+1) and the computed solution xn+1 at time
tn+1, i.e.,

⌧n = x(tn+1)�R(x(tn)). (13.4)

We say that a RK method is consistent if the LTE satisfies

max
n=0,...,N�1

|⌧n| = O(h2)

as h! 0 and more generally order-p consistent if

max
n=0,...,N�1

|⌧n| = O(hp+1)

as h! 0.
In fact, since RK methods are one-step methods, consistency implies convergence, and

moreover order-p consistency implies order-p accuracy. The proof is analogous to the proof
for Taylor series methods and is left as an exercise. In other words, there is no concern
about zero-stability analogous to the concern for LMMs. On the other hand, absolute
stability remains an important concept and can be defined similarly. We shall return to
this later.

It is in fact not too hard to see (exercise) that consistency is equivalent to the condition
that

P
s

i=1 bi = 1, which shall henceforth be assumed.

13.5 Simple example: modified Euler

One-stage RK methods are not very exciting, so our introductory example is 2-stage RK
method, namely the modified Euler method . As an explicit RK method satisfying the
sum rule (13.3), it must be specified by a Butcher tableau of the form:

0 0 0
a a 0

1� b b

Specifically it corresponds to the choice a = 1/2, b = 1:

0 0 0
1/2 1/2 0

0 1

Concretely, this yields the update equations

k1 = f(xn, tn)

k2 = f(xn + hk1/2, tn + h/2)

xn+1 = xn + hk2,

which allow us to determine xn+1 directly, given xn.
You can think of modified Euler as attempting to get an estimate of f(x(t)) at t = tn+h/2

and then using this estimate at the midpoint of the interval [tn, tn+1] to advance the state.
We will see shortly that modified Euler is second-order accurate, and moreover that given

the choice a = 1/2, the further choice b = 1 is the unique choice guaranteeing second-order
accuracy.

61

14 Designing higher-order explicit schemes

We are going to get a taste of how to derive explicit RK schemes of arbitrary orders of
accuracy. Since we will assume the sum rule (13.3), by the preceding remarks it will suffice
to consider the case where f does not depend on t, i.e., where (abusing notation slightly)
f(x, t) = f(x).

14.1 One-stage methods

Any explicit one-stage method is simply of the form

xn+1 = xn + bhfn.

However, consistency demands that b = 1, hence we have simply recovered Euler’s method,
which we know to be first-order accurate.

14.2 Two-stage methods

Let us leave a and b undetermined in our preceding discussion of the modified Euler method
in Section 13.5.

In order to estimate the LTE (13.4), it is useful to write x(tn+1) via Taylor series expan-
sion of x(t) about t = tn, truncating at order high enough to detect the order of consistency.

x(tn+1) = x(tn) + hx0(tn) +
h2

2
x00(tn) +O(h3).

Now recall
x0(t) = f(x(t)),

so differentiating through the ODE we obtain

x00(t) = Df(x(t)) · x0(t) = Df(x(t))f(x(t)),

and we can substitute to obtain

x(tn+1) = xn + hfn +
h2

2
f (1)
n

fn +O(h3)

where f (1)
n := Df(xn) and we have defined xn = x(tn).

Meanwhile our general consistent explicit RK method reads as

k1 = f(xn)

k2 = f(xn + ahk1)

xn+1 = xn + h [(1� b)k1 + bk2] ,

or, all in one line:

xn+1 = xn + h [(1� b)fn + bf(xn + ahfn)]

= xn + h
h
(1� b)fn + b

⇣
fn + ahf (1)

n
fn +O(h2)

⌘i

= xn + h
h
fn + abhf (1)

n
fn
i
+O(h3)

= xn + hfn + abh2f (1)
n

fn +O(h3)

62

Subtracting equations yields

⌧n = x(tn+1)� xn+1

= h2

✓
1

2
� ab

◆
f (1)
n

fn +O(h3).

Therefore ⌧n = O(h3) in general (i.e., we have second-order accuracy) if and only if ab = 1/2.
Otherwise we have only first-order accuracy.

Thus the most general possible second-order accurate 2-stage explicit RK method (sat-
isfying the sum rule) is specified, for b 6= 0, by the Butcher tableau:

0 0 0
(2b)�1 (2b)�1 0

1� b b

The case b = 1 corresponds to the modified Euler method, but we can see there is an
entire continuous family of choices.

14.3 Three-stage methods

Performing a Taylor series expansion to one higher order we find

x(tn+1) = xn + hf (0)
n

+
h2

2
f (1)
n

f (0)
n

+
h3

3!

h
f (2)
n

f (0)
n

f (0)
n

+ f (1)
n

f (1)
n

f (0)
n

i
+O(h4),

where we have now defined f (k)
n := Dkf(xn), so in particular f (0)

n = fn. Note that in general
f (k)
n is a (k + 1)-index tensor, and when d > 1, we need to disambiguate how to ‘multiply’

or contract tensors in the above expression.
Concretely we have, for example,

[f (2)
n

]i,j1j2 = @j1@j2fi(xn),

and in general we write
[f (k)

n
]i,j1···jk = @j1 · · · @jkfi(xn).

Note that (by commutation of partial derivatives) f (k)
n is symmetric with respect to permu-

tation of the last k indices.
We define the contraction f (2)

n f (0)
n f (0)

n 2 Rd in particular via

[f (2)
n

f (0)
n

f (0)
n

]i =
X

j1,j2

[f (2)
n

]i,j1j2 [f
(0)
n

]j1 [f
(0)
n

]j2 ,

and f (1)
n f (1)

n f (0)
n 2 Rd via

h
f (1)
n

f (1)
n

f (0)
n

i

i

=
X

j1,j2

[f (1)
n

]i,j1 [f
(1)
n

]j1,j2 [f
(0)
n

]j2 .

The most general possible Butcher tableau for an explicit 3-stage RK method satisfying
the sum rule is the following:

63

0 0 0 0
c c 0 0
d d� a a 0

b1 b2 b3

One can check (exercise) that order-3 consistency is equivalent to the following nonlinear
equations being satisfied:

b1 + b2 + b3 = ? (order 1 condition)
b2c+ b3d = ? (order 2 condition)

b2c
2 + b3d

2 = ? (order 3 condition)
b3ac = ? (order 3 condition)

The values of the ?’s are constants left to be determined by the reader.
Why do we get four equations? Let us consider order-by-order.
When we compute the LTE, we will get an expansion of the following form

⌧n = C1f
(0)
n

h+ C2f
(1)
n

h2 +
⇣
C3f

(2)
n

f (0)
n

f (0)
n

+ C4f
(1)
n

f (1)
n

f (0)
n

⌘
h3 +O(h4),

where the constants Ck are defined in terms of our RK data. We need
In order to guarantee the cancellation of first-order terms, we need C1 = 0. For second-

order terms, we need C2 = 0. But for third-order terms we need both C3 = 0 and C4 = 0.
This yields four nonlinear equations. Notice that we have 6 free parameters, hence we expect
that there are many solutions to these equations.

14.4 Beyond third order

It seems that with three stages, we have a bit of extra wiggle room and perhaps can ask for
the cancellation of one additional order. Let us evaluate this possibility.

The fourth-order contribution will involve the following four terms:

f (3)f (0)f (0)f (0), f (2)f (1)f (0)f (0), f (1)f (2)f (0)f (0), f (1)f (1)f (1)f (0),

where we now omit the n from the subscript for notational clarity. The convention for
evaluating these tensor contractions generalizes our earlier convention, as we shall illustrate
in the case of f (1)f (2)f (0)f (0):

• Write out all the indexed expressions in order with no repeated indices:
h
f (1)

i

i1,j1

h
f (2)

i

i2,j2j3

h
f (0)

i

i3

h
f (0)

i

i4

• Reading from left to right after the first tensor, sequentially replace each newly ap-
pearing index with the first index that remains unpaired among the preceding factors,
unless no unrepeated indices remain:

i2 j1, i3 j2, i4 j3

to obtain h
f (1)

i

i1,j1

h
f (2)

i

j1,j2j3

h
f (0)
n

i

j2

h
f (0)
n

i

j3

64

Figure 14.1: Rooted trees of order 4, corresponding, left to right, to the expressions
f (3)f (0)f (0)f (0), f (2)f (1)f (0)f (0), f (1)f (2)f (0)f (0), and f (1)f (1)f (1)f (0).

• The first index of the first tensor will be the index for the contracted tensor. Sum
over the rest of the indices:

h
f (1)f (2)f (0)f (0)

i

i

=
X

j1,j2,j3

h
f (1)

i

i,j1

h
f (2)

i

j1,j2j3

h
f (0)

i

j2

h
f (0)

i

j3

.

Notice importantly that

f (2)f (1)f (0)f (0) 6= f (1)f (2)f (0)f (0),

in general for d > 1,so the order conditions for general systems are more restrictive than
they would be for scalar equations!

In general such expressions are in one-to-one correspondence with rooted trees of order
4, cf. Figure (14.4). Each node in the tree corresponds to one of the factors of f (k). The
edge connecting each node to its parent corresponds to the first index of the tensor, while
the edges connecting it to its children correspond to the remaining k indices. The root of
the tree corresponds to the first factor, whose first index remains uncontracted in the final
expression.

The contraction convention outlined above corresponds to a depth-first search through
the tree. It can be seen (by symmetry of the tensors with respect to permutation of the
child indices) that any depth-first search yields an equivalent expression, e.g., for the second
tree in Figure (14.4), we have

f (2)f (1)f (0)f (0) = f (2)f (0)f (1)f (0),

corresponding to two different possible depth-first searches through the tree.
For completeness, we illustrate in Figure Figure (14.4) all rooted trees of order at most

3, which correspond to the lower-order terms considered earlier.
In summary, to get to fourth-order accuracy, we need to solve four additional equations,

but we only have 6 degrees of freedom among 3-stage RK explicit methods satisfying the
sum rule. Therefore we do not expect this to be possible, and indeed it is not.

14.5 Attainable order?

What order of accuracy can we expect from an s-stage explicit RK method satisfying the
sum rule. In general, such a method is specified by a Butcher array of the following form,
where b is unconstrained and A is unconstrained besides the requirement that it is strictly
lower triangular :

65

Figure 14.2: Rooted trees of order at most 3, corresponding, left to right, to the expressions
f (0), f (1)f (0), f (2)f (0)f (0), and f (1)f (1)f (0).

k 1 2 3 4 5 6 7 8 9 10 11 12
Tk 1 1 2 4 9 20 48 115 286 719 1842 4766

Table 1: Number of rooted trees of order k as a function of k.

A1 A

b>

Note that A yields s(s � 1)/2 degrees of freedom, and b yields another s degrees of
freedom, so we have in total

s(s+ 1)

2
degrees of freedom.

How many equations do we need to solve to guarantee p-th order accuracy? Our pre-
ceding discussion suggests that we need to solve as many equations as the number of rooted
trees of order at most p. The number of rooted trees Tk of order k grows quite quickly, cf.
Table 1. In fact it is known that

lim
k!1

Tk+1

Tk

⇡ 3,

and in particular the limit exists. Therefore, one expects asymptotic growth that looks
roughly like Tk / 3k.

In Table 2 we report
P

p

k=1 Tk as a function of p, i.e., the number of equations that must
be satisfied to guarantee p-th order accuracy. We also report s = s(p), the ‘naive’ number
of stages one needs to guarantee at least as many unknowns as equations. We say ‘naive’ to
emphasize that some equations may be redundant and moreover that existence of a scheme
is not guaranteed by having ‘enough equations.’ The precise number of stages needed is
only known rigorously up to order 8.

p 1 2 3 4 5 6 7 8 9 10 11 12
P

p

k=1 Tk 1 2 4 8 17 37 85 200 486 1205 3047 7813
s(p) 1 2 3 4 6 9 13 20 31 49 78 125

Table 2: Number of rooted trees of order at most p as a function of p, i.e., the number of
equations to solve to guarantee p-th order accuracy, as well as s(p), the ‘naive’ number of
stages one needs to guarantee at least as many unknowns as equations.

66

In practice the most widely-used RK method, commonly called RK4, is a four-stage
method with fourth-order accuracy, specified by the Butcher array

0 0
1/2 1/2 0
1/2 0 1/2 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Historically, many popular RK methods were devised before the era of computers, and
sparse Butcher arrays with nice-looking numbers were therefore favored. However, there is
not any obvious a priori reason to favor the RK4 method among the many possible explicit
fourth-order accurate four-stage RK methods. That said, it seems to have withstood the
test of time rather well!

15 Absolute stability

The study of absolute stability for RK methods is similar to that of LMMs. As in the case
of LMMs, we can reduce from the general linear setting to the scalar setting

x0(t) = �x(t)

by diagonalization. We will now study the result of applying an explicit RK method to this
scalar ODE. Along the way we will define some general notions pertaining to the absolute
stability of RK methods that are relevant in the general (possibly implicit) case.

15.1 The stability function

Consider what happens when we apply an s-stage explicit RK method to the case f(x, t) =
�x. Equation (13.2) reduces simply to

ki = �xn + ĥ
i�1X

j=1

aijkj , i = 1, . . . , s,

where ĥ := h� as before.
To simplify expressions, we can define k̂i = ki/� and moreover fix x = xn, since n will

remain fixed throughout the discussion. (Note that the case � = 0 is trivial.) This yields
the recursion

k̂i = x+ ĥ
i�1X

j=1

aij k̂j , i = 1, . . . , s. (15.1)

67

If we compute sequentially, we have

k̂1 = x

= (1)x

k̂2 = x+ ĥa21k̂1

=
⇣
1 + a21ĥ

⌘
x

k̂3 = x+ ĥ
⇣
a31k̂1 + a32k̂2

⌘

=
⇣
1 + a31ĥ+ a32ĥ(1 + a21ĥ)

⌘
x

=
⇣
1 + (a31 + a32)ĥ+ a32a21ĥ

2
⌘
x

...

It is not hard then to see that in general we can write

k̂i = Pi(ĥ)x, (15.2)

where Pi is a polynomial of order i� 1.
Now (15.2), together with (13.1), implies that the image of x under the RK iteration

map is simply

R(x) = x+ ĥ
sX

i=1

bik̂i

=

1 + ĥ

sX

i=1

biPi(ĥ)

!
x.

In summary,
R(x) = R(ĥ)x, (15.3)

where

R(z) = 1 + z
sX

i=1

biPi(z). (15.4)

Note that we have removed �, h from the discussion as separate entities, appearing now only
jointly via ĥ = h�.

The function R(z) is called the stability function of the RK method. In general, the
stability function is defined as the function that makes (15.3) hold in general for the scalar
equation x0(t) = �x(t). We will see later that for general (possibly implicit) RK methods,
the stability function R(z) is always a rational function. However, in the explicit case, we
have just established that it is a polynomial and, moreover, that it is of order s. In the
explicit case, we may then also refer to it as the stability polynomial of the RK method,
for emphasis.

15.2 Deriving the stability polynomial

In fact we can compute the stability function in the explicit case fairly explicitly. Plugging
(15.2) into (15.1), the polynomials satisfy the recursion

Pi(ĥ)x = k̂i =

2

41 + ĥ
i�1X

j=1

aijPj(ĥ)

3

5x,

68

from which we deduce that

Pi(z) = 1 + z
i�1X

j=1

aijPj(z). (15.5)

We have already computed

P1(z) = 1

P2(z) = 1 + a21z

P3(z) = 1 + (a31 + a32)z + a32a21z
2,

from which we deduce next that

P4(z) = 1 + (a41 + a42 + a43)z + (a42a21 + a43a31 + a43a32) z
2 + (a43a32a21)z

3.

In general we can define a matrix cij of coefficients via

Pi(z) =
i�1X

j=1

cijz
j ,

where ci0 = 1, and (speculatively) cij consists for j � 1 of a sum of terms, one for each
decreasing sequence of positive integers of length j + 1, starting at i.

For example, when i = 4 we have 3 such sequences for j = 1:

(4, 1), (4, 2), (4, 3);

3 such sequences for j = 2:
(4, 2, 1), (4, 3, 1), (4, 3, 2);

and 1 such sequence for j = 3:
(4, 3, 2, 1).

These correspond to the terms
a41, a42, a43;

a42a21, a43a31, a43a32;

a43a32a21;

respectively.
The sums of each row of terms can be written, respectively, as

[A1]4;

[A21]4;

[A31]4;

where 1 2 Rs is the vector of all ones.
Indeed, observe that

[Aj1]i =
X

k1,...,kj

aik1ak1k2 · · · akj�1kj ,

but since A is strictly lower triangular, the only remaining terms in the sum correspond to
decreasing sequences (i, k1, . . . , kj). Therefore we reckon that cij = [Aj1]i, which in fact
also recovers ci0 = 1 conveniently.

69

In summary, we conjecture

Pi(z) =
i�1X

j=0

[Aj1]iz
j , (15.6)

and we can check the claim by induction.
It is helpful first to note that in general, [Aj1]i = 0 if j � i. To see this, observe that

[Aj1]i consists of sum of terms in correspondence with decreasing sequences (i, k1, . . . , kj)
of positive integers. There is no such sequence if j � i, so the claim follows.

Now to prove (15.6), suppose inductively that it hols for all j < i. We want to show
that it holds for i. From (15.5), we have

Pi(z) = 1 + z
i�1X

j=1

aijPj(z)

= 1 + z
i�1X

j=1

aij

j�1X

k=0

[Ak1]jz
k

= 1 +
i�1X

j=1

j�1X

k=0

aij [A
k1]jz

k+1.

Now [Ak1]j = 0 whenever k � j. Therefore we can extend the summation over k up to the
upper limit i� 2 without changing the expression, obtaining

Pi(z) = 1 +
i�1X

j=1

i�2X

k=0

aij [A
k1]jz

k+1.

This allows us to exchange the order of summation and compute

Pi(z) = 1 +
i�2X

k=0

0

@
i�1X

j=1

aij [A
k1]j

1

A zk+1

= 1 +
i�2X

k=0

⇥
A(Ak1)

⇤
i
zk+1

= 1 +
i�2X

k=0

⇥
Ak+11

⇤
i
zk+1

= 1 +
i�2X

k=1

⇥
Ak1

⇤
i
zk

=
i�1X

k=0

[Ak1]iz
k,

as was to be shown.
In summary, we have shown.

Lemma 38. With notation as in the preceding,

Pi(z) =
i�1X

j=0

[Aj1]iz
j .

Note in particular that [Aj1]i = 0 whenever i j.

70

Now let’s get back to the discussion of the stability polynomial. Plugging the result of
the lemma into (15.4), we derive:

R(z) = 1 + z
sX

i=1

bi

i�1X

j=0

[Aj1]iz
j .

Once again, the sum over j can be extended to the upper limit s � 1 since [Aj1]i = 0 for
j � i, yielding

R(z) = 1 + z
sX

i=1

bi

s�1X

j=0

[Aj1]iz
j

= 1 +
s�1X

j=0

sX

i=1

bi[A
j1]i

!
zj+1

= 1 +
s�1X

j=0

�
b>Aj1

�
zj+1,

or equivalently,

R(z) = 1 +
sX

j=1

(b>Aj�11)zj .

Evidently the linear term in R(z), corresponding to the index j = 1 in the summation, is
(b · 1)z. Hence the linear term is z if and only if the RK method is consistent.

Theorem 39. For an explicit s-stage RK method with RK matrix A and weights b, the
stability polynomial R is a polynomial of order s, given by the formula

R(z) = 1 +
sX

j=1

(b>Aj�11)zj .

The linear term in the polynomial is z if and only if b>1 = 1, i.e., if and only if the method
is consistent.

15.3 Digression on the order of accuracy

Order-p consistency more generally places constraints on the stability function, but these
constraints are only necessary, not sufficient, for order-p accuracy! Indeed, notice that
order-p consistency requires that

R(x)� e�hx = O(hp+1)

for arbitrary x, i.e., that
R(z)� ez = O(zp+1)

as z ! 0. In the explicit case, we can match terms order-by-order against the Taylor series
of ez about the origin to obtain:

Corollary 40. Consider an explicit s-stage RK method with RK matrix A and weights b.
If the method is order-p accurate, then

b>Aj�11 =
1

j!

for j = 1, . . . , p.

71

Remark 41. Recall that for second-order accuracy of an explicit RK method satisfying
the sum rule, there was only one equation to be satisfied, besides the order 1 condition
that b>1 = 1. The preceding corollary furnishes one necessary equation for second-order
accuracy, so in fact this equation is also sufficient. However, each successive higher order
of accuracy demands more than one extra equation, while the corollary only furnishes one
new equation per order.

In other words, an s-stage explicit RK method satisfying the sum rule c = A1 is second-
order accurate if and only

b>1 = 1, b>A1 =
1

2
.

This isn’t really a proof, but the claim can be verified directly (exercise). Alas we cannot
make such a simple statement for higher orders.

For any s-stage, s-order accurate explicit RK method, the stability polynomial R(z) is
of order s and must match the Taylor series of ez exactly up to order s, hence is completely
determined as

R(z) =
sX

j=1

1

j!
zj .

Recall that there are only four cases s = 1, 2, 3, 4 where the construction of such a method
is possible, and though there may be many s-stage, s-order accurate explicit RK methods,
they all have the same stability polynomial.

15.4 Absolute stability regions

We make a definition of absolute stability analogous to the definition in the setting of LMMs.

Definition 42. An RK method is absolutely stable (for given ĥ) if the solution {xn}1n=0

produced by applying the method with step size h to the scalar ODE x0(t) = f(x, t) satisfies
limn!1 xn = 0 for all initializations. The region of absolute stability is the set of all
ĥ for which the method is absolutely stable. Other definitions are assumed to be similar
without comment.

Since xn+1 = R(xn) = R(ĥ)xn, it is easy to see that the RK method furnishes the
solution

xn = (R(ĥ))nx0,

and therefore:

Theorem 43. The region of absolute stability for an RK method is {z 2 C : |R(z)| < 1}.

Remark 44. The weak region of absolute stability is simply the set {z 2 C : |R(z)| 1},
and there are no complications due to repeated roots as in the case of multistep methods.

Observe that consistency implies that

R(z) = 1 + z +O(z2).

Therefore, in a neighborhood of the origin, the absolute stability region should resemble the
absolute stability region induced by R(z) = 1 + z, which is the stability function for the
explicit Euler method. With some menial work, it is possible to conclude:

Theorem 45. The region of absolute stability of any consistent RK method contains some
interval (�h0, 0), where h0 > 0, and in fact contains some open set in C containing this
interval. Moreover, the region of absolute stability does not contain any interval of the form
(0, h1) for h1 > 0.

72

Figure 15.1: Absolute stability regions for the s-stage, s-order accurate explicit RK methods,
s = 1, 2, 3, 4.

Note that this conclusion is not true of LMMs, cf. the midpoint/leapfrog method.
For the s-stage, s-order accurate explicit RK methods, the absolute stability regions in

all four cases are depicted in Figure (15.4).
Note that none of the methods are A-stable, and indeed since R(z)! z as z ! �1:

Theorem 46. No explicit RK method is A-stable or even A0-stable.

How can we compute arbitrary absolute stability regions? We can again adopt the
boundary locus perspective. Sweeping across ✓ 2 [0, 2⇡), solve

R(z) = ei✓

for z. Since R(z) is an order-s polynomial, this is now a root-finding problem with s
solutions, yielding s values of z on the boundary locus associated to the each value of ✓.

15.5 Implicit stability functions

In the general (not necessarily explicit) case, we still have

k̂i = x+ ĥ
sX

j=1

aij k̂j , i = 1, . . . , s,

73

and letting k̂ = (k̂1, . . . , k̂s)>, we can repackage these equations in vectorized form as

k̂ = x1+ ĥAk̂,

which we can solve as
k̂ = x(1� ĥA)�11.

Then

R(x) = x+ ĥ
sX

i=1

bik̂i

= x+ ĥb>k̂

=
⇣
1 + ĥb>(1� ĥA)�11

⌘
x,

from which it follows that the stability function can be written

R(z) = 1 + zb>(1� zA)�11,

which is evidently a rational function.
A-stability can be assessed in terms of the stability function R(z). Since it is a rational

function, unlike the explicit case, we cannot rule out the possibility of A-stability. It is hard
to predict in advance whether an RK method will be A-stable, but we will see examples
that are (even to arbitrary order of accuracy). A posteriori, A-stability can be checked by
locating the poles of R(z) and bounding R(z) on the imaginary axis alone.

Theorem 47. An RK method is A-stable if and only if all of the poles of the stability
function lie in the right half-plane and |R(z)| 1 for all z on the imaginary axis.

Proof. Use the maximum modulus principle for holomorphic functions. (If you don’t know
this, don’t worry about it.)

16 Runge-Kutta-Chebyshev methods

Our goal in this section is do design an s-stage explicit RK method whose stability polyno-
mial yields an interval of (weak) absolute stability that is as long as possible. Our target is
the polynomial

R(z) = Ts

⇣
1 +

z

s2

⌘
,

where Ts is the s-th Chebyshev polynomial, defined by

Ts(t) = cos(s cos�1(t)), t 2 [�1, 1].

The choice of the s-th polynomial is required since the order of the stability polynomial must
be s, the number of stages. Refer to Appendix B for background on Chebyshev polynomials.
Furthermore, note that by construction

Ts(1) = 1, T 0
s
(1) = s2,

where the second equation can be confirmed via elementary calculus and application of
L’Hospital’s rule.

74

The shifting and scaling in our definition of the target R are designed to ensure that

R(0) = 1, R0(0) = 1,

which is equivalent to consistency of the corresponding RK method, and moreover that

|R(t)| 1, t 2 [�2s2, 0],

so that the interval of (weak) absolute stability is [�2s2, 0]. The remarkable property of
Runge-Kutta-Chebyshev methods is that this interval grows quadratically (as opposed
to linearly) with the number s of stages.

How can we define an RK method that yields this stability polynomial? We will do so
somewhat obliquely. As with any computation involving orthogonal polynomials, the key is
to exploit their three-term recurrence relation, which for Chebyshev polynomials is (B.1),
reproduced here as

Tj+1(t) = 2tTj(t)� Tj�1(t) (16.1)

for j = 1, 2, Recall moreover that T0 ⌘ 1 and T1(t) = t.
Suppose that we are given a value x = x0 and want to compute R(x), the image under

the Runge-Kutta map for a time step h. We will consider only the autonomous case f(x, t) =
f(x), which we can pass to from the non-autonomous case as usual. (For simplicity we will
avoid the time step index n in the presentation. Accordingly, the subscripts in the following
do not indicate the time step index.) We will produce R(x) over the course of several
stages.

First define
x1 = x0 +

h

s2
f(x0)

and then recursively define

xj+1 = 2xj � xj�1 +
2h

s2
f(xj)

for j = 1, . . . , s� 1. Then return
R(x) = xs.

The reader should verify (exercise) that this algorithm in fact defines an explicit, con-
sistent RK method. (How should the recursive construction be defined directly in the
non-autonomous case so that, when the algorithm is interpreted as an RK method, the sum
rule (13.3) is satisfied?)

To confirm that R(z) = Ts

�
1 + z

s2

�
, we need only consider the scalar case f(x) = �x

and verify that

R(x) = Ts

1 +

ĥ

s2

!
x. (16.2)

Evidently in this case we have

x1 =

1 +

ĥ

s2

!
x = T1

1 +

ĥ

s2

!
x.

We claim that in general

xj = Tj

1 +

ĥ

s2

!
x

75

To see this, inductively assume that it holds for all j < i and then compute

xi+1 = 2xi � xi�1 +
2h

s2
f(xi)

= 2

1 +

ĥ

s2

!
xi � xi�1

= 2

1 +

ĥ

s2

!
Ti

1 +

ĥ

s2

!
� Ti�1

1 +

ĥ

s2

!

= Ti+1

1 +

ĥ

s2

!
,

which follows by applying the 3-term recurrence (16.1) at t = 1 + ĥ

s2
. By induction, the

claim is proved, from which (16.2) immediately follows.

17 Collocation methods

The idea of collocation methods is based once again on the integral form of our ODE:

x(t+ h) = x(t) +

Z
t+h

t

f(x(⌧), ⌧) d⌧. (17.1)

We want to replace the integral in the right-hand side with a quadrature formula, possibly
of high order in h.

17.1 Basic motivation

By shifting and scaling, we can reduce the problem of designing quadrature formulas to the
interval [0, 1]. If we choose nodes c1, . . . , cs and weights b1, . . . , bs for this interval such that

Z 1

0
⇠(u) du ⇡

sX

i=1

bi⇠(ci), (17.2)

then we have the approximation of the integral form (17.1):

x(t+ h) ⇡ x(t) + h
sX

i=1

bif (x(t+ cih), t+ cih) .

Consider the nodes and weights as being now fixed in the discussion that immediately
follows.

Consider the time t = tn, define xn ⇡ x(tn) as usual as our discrete solution, define
intermediate times tn,i := tn + cih following our earlier convention, loosely define

ki ⇡ f(x(tn,i), tn,i),

and define a time-stepping scheme

xn+1 = xn + h
sX

i=1

biki, (17.3)

inspired by (17.1), of the form of an RK method as in (13.1).

76

17.2 Defining equations for the slopes

How can the ki be determined? The idea is to replace x(t) by a polynomial p(t) of order s
which satisfies

p(tn) = xn, p0(tn,i) = f(p(tn,i), tn,i), i = 1, . . . , s, (17.4)
matching the value of x(t) at time t = tn and satisfying the differential equation
exactly at the intermediate times tn,i.

Then we will more concretely define

ki = f(p(tn,i), tn,i), (17.5)

which in turn specifies the numerical scheme via (17.3).
Note that (17.4) demands a self-consistency condition on p, which will translate to a

system of nonlinear equations defining the ki, of the form (13.2).
To see this, note that instead of looking for p satisfying (17.4), we can look for q(t) := p0(t)

of order s� 1 satisfying
q(tn,j) = kj , j = 1, . . . , s

and then recover
p(t) = xn +

Z
t

tn

q(⌧) d⌧. (17.6)

But q can be recovered as a linear combination of Lagrange basis polynomials subordinate
to the interpolation points

th = (tn,1, . . . , tn,s) = tn1+ hc,

where c is the (fixed) vector of nodes. Concretely,

q(t) =
sX

j=1

`j(t; th)kj .

(Note: Here we follow a one-indexing rather than zero-indexing convention for the inter-
polation points, by contrast with the convention of Appendix A used in the discussion of
interpolation in the context of LMMs.)

Plugging into (17.6) and evaluting at t = tn,i, we obtain

p(tn,i) = xn +
sX

j=1

kj

Z
tn,i

tn

`j(⌧ ; th) d⌧.

= xn + h
sX

j=1

kj

Z
ci

0
`j(⌧ ; c) d⌧

= xn + h
sX

j=1

aijkj ,

where
aij =

Z
ci

0
`j(⌧ ; c) d⌧.

Then to satisfy (17.5), we must have

ki = f

0

@xn + h
sX

j=1

aijkj , tn,i

1

A ,

which, together with (17.3), precisely defines an RK method of the general form (13.1)-
(13.2).

77

17.3 Defining the weights, given the nodes

We will imagine for now that the nodes 0 c1 < . . . < cs 1 are fixed and return later
to the question of defining the ‘optimal’ nodes. For now we ask ourselves: given the nodes,
how to define appropriate quadrature weights b1, . . . , bs, guaranteeing (17.2), i.e.,

Z 1

0
⇠(u) du ⇡

sX

i=1

bi⇠(ci)

in some appropriate sense?
One way to think about quadrature rules is to ask for them to be exact for polynomials

up to some order p. This motivates replacing ⇠ with its interpolating polynomial for the
data

(c1, ⇠(c1)), . . . , (cs, ⇠(cs)),

which exactly matches ⇠ as long as ⇠ is a polynomial of order at most s�1, by the uniqueness
property of the Lagrange interpolating polynomial. Concretley, we replace

Z 1

0
⇠(u) du ⇡

Z 1

0

sX

i=1

`i(u; c)⇠(ci) du =
sX

i=1

bi⇠(ci),

where

bi :=

Z 1

0
`i(u; c) du.

We know that the corresponding quadrature rule is exact for polynomials of order up to
s� 1, and moreover by Corollary 74, the error more generally satisfies

�����

Z 1

0
⇠(u) du�

sX

i=1

bi⇠(ci)

����� C sup
u2[0,1]

|⇠(p)(u)|, (17.7)

where p = s, and the constant C > 0 depends on the nodes c but is otherwise universal and
independent of ⇠.

In general, if a quadrature rule is exact for polynomials of order up to p � 1, even if
p 6= s, then (17.7) holds by replacing ⇠ in the integral

R 1
0 ⇠(u) du with a (p � 1)-th order

polynomial interpolation through p points, e.g., the Chebyshev nodes.
Such a bound in terms of the p-th derivative ensures that if we plug our quadrature rule

into (17.1), appropriately shifting and scaling the integration interval from [tn, tn + h] to
[0, 1], we introduce the discrepancy

�����

Z
t+h

t

g(⌧) d⌧ � h
sX

i=1

big(t+ cih)

����� = h

�����

Z 1

0
g(t+ uh) du�

sX

i=1

big(t+ cih)

�����

 Chp+1 sup
⌧2[0,T]

|g(p)(⌧)|

into the integral form of the ODE. This is strongly suggestive of an LTE of size O(hp+1),
hence an order of accuracy of O(hp). This is in fact the case, as we shall discuss below.

Thus far our discussion has held for an arbitrary choice of nodes c1, . . . , cs, which we
have found induce an order-s accurate implicit RK method. Somewhat remarkably, we shall
see that for a special choice of nodes c, we can define a quadrature rule that is exact for
polynomials up to order 2s� 1 and more generally satisfies (17.7) with p = 2s, yielding an
order-(2s) accurate implicit RK method!

78

17.4 Digression on solving implicit methods

Now that we are encountering our first implicit RK methods, it is worthwhile to think about
when these schemes admit (unique) solutions. Moreover, given an RK method specified by
matrix A, weights b = (bi), and nodes c = (ci), we may ask in practice how to solve for the
slopes ki defined by (13.2).

Let x = xn and t = tn be fixed. We can repackage the equations (13.2) in vectorized
form as

K = F (X + hAK, th), (17.8)

where X and K are s⇥ d matrices and th is an s⇥ 1 defined by

X =

0

B@
x>

...
x>

1

CA , K =

0

B@
k>1
...
k>
s

1

CA , th =

0

B@
t+ c1h

...
t+ csh

1

CA ,

and F : Rs⇥d ⇥ Rs⇥d ! Rs⇥d is a vectorized extension of f . Concretely, for

Y =

0

B@
y>1
...
y>
s

1

CA 2 Rs⇥d, ⌧ =

0

B@
⌧1
...
⌧s

1

CA 2 Rs,

we can define

F (Y, ⌧) =

0

B@
f(y1, ⌧1)

...
f(yd, ⌧d)

1

CA 2 Rs⇥d.

If we endow Rs⇥d with the Frobenius norm, it is worthwhile to see that L-Lipschitzness
of f (in the first slot, which is all the really matters) extends to F as follows:

kF (Y, ⌧)� F (Z, ⌧)kF LkY � ZkF.

We can view the problem of solving (17.8) as a fixed-point problem for the map

� : Rs⇥d ! Rs⇥d, �(K) = F (X + hAK, th).

Evidently, if f is L-Lipschitz, then

k�(K)� �(K 0)kF LhkAK �AK 0kF (LkAkh) kK �K 0kF,

where k · k indicates the ordinary operator norm as usual. Therefore � is (LkAkh)- Lipschitz,
hence the entire scheme admits a unique solution for all h < (LkAk)�1, which can be
found by simple fixed-point iteration and accelerated once again by Anderson acceleration.
Alternatively, we can view K = �(K) as a generic system of nonlinear equations to be solved
by Newton’s method. Considerations such as those discussed in Section 8.1.2 are enough to
pass more broadly to the locally Lipschitz case, provided that the underlying system admits
a solution.

17.5 Summary up to determining the nodes

We summarize our discussion so far in the following theorem, which also formalizes the order
of accuracy and the situation with regard to the sum rule (13.3).

79

Theorem 48. Fix arbitrary nodes 0 c1 < . . . < cs 1, and define

aij =

Z
ci

0
`j(⌧ ; c) d⌧, bi :=

Z 1

0
`i(⌧ ; c) d⌧.

Then the s-stage RK method defined by matrix A = (aij), weights b = (bi), and nodes
c = (ci) satisfies the sum rule c = A1 and is order-p accurate, where p is the order of
accuracy of the quadrature rule induced by b, c, in the sense that the quadrature rule is exact
for polynomials up to order p � 1 (or equivalently that (17.7) holds). In particular, p � s
regardless of the choice of nodes.

Remark 49. (Subtle!) We will only sketch the proof of the order of accuracy, which is
fairly technical, but the work that we leave out will be similar to work we’ve done in the
proof of Dahlquist’s theorem, Theorem 21. (If you only want order-s accuracy—which is
not sharp in the most important case of Gauss-Legendre quadrature where p = 2s, to be
discussed below—then the proof is significantly easier. In fact, p = 2s is optimal, i.e., p 2s
always.) The key ingredient for the more powerful proof is that the discrete solution of the
RK method can be viewed as being produced from a polynomial solution p on [tn, tn+1] that
satisfies the differential equation exactly at the nodes, cf. (17.4). The reason why it is easier
to get order-s accuracy is that this polynomial is actually not generally O(hp+1)-accurate
pointwise! It is only accurate up to O(hs+1). But magically its value at tn+1 is accurate up
to O(hp+1), even when p > s. This motivates the following lemma, which identifies the RK
method’s discrete solution xn+1 = R(xn) with the value p(tn+1) of this polynomial.

To get merely order-s accuracy, it is sufficient to first show that the RK slopes ki satisfy
ki = f(x(tn,i), tn,i) + O(hs), which can be verified by plugging in the true slopes k(0)

i
=

f(x(tn,i), tn,i) as the initial guess for the RK slopes in a fixed-point iteration, then verifying
that the entire fixed-point iteration does not move them by more than O(hs), since it
only moves them by O(hs) in the first iteration, since they nearly already satisfy the RK
equations. Then they can be swapped out for the true slopes in the quadrature formula
defining xn+1 (17.3) at the cost of only O(hs+1). But according to the preceding claims,
this approach throws away a lot of important information.

Lemma 50. With notation as in the preceding, the value p(tn+1) of the polynomial p defined
via (17.4) coincides with the solution xn+1 = xn + h

P
s

i=1 biki of the RK method at time
step n+ 1, defined as in (17.3).

Proof. Recall p(tn) = xn and p0(tn,i) = ki by construction. Therefore

xn+1 = p(tn) + h
sX

i=1

bip
0(tn,i).

Now p0 is a polynomial of order s� 1, so the quadrature formula defined by b, c is exact for
it, and

h
sX

i=1

bip
0(tn,i) =

Z
tn+1

tn

p0(⌧) d⌧ = p(tn+1)� p(tn),

from which it follows that xn+1 = p(tn+1), as was to be shown.

Proof of Theorem 48. First we see to the sum rule. Compute
sX

j=1

aij =

Z
ci

0

sX

j=1

`j(⌧ ; c) d⌧.

80

Now
P

s

j=1 `j(⌧ ; c) is literally the Lagrange interpolating polynomial for the data (c1, 1), . . . , (cs, 1).
Since the constant function 1 is a zero-th order polynomial, the Lagrange interpolating poly-
nomial recovers it exactly by uniqueness, i.e.,

P
s

j=1 `j(· ; c) ⌘ 1. This implies
sX

j=1

aij =

Z
ci

0
1 d⌧ = ci,

as desired.

17.5.1 Proof of order of accuracy: autonomous linear case

For the order of accuracy, consider first the linear case

f(x) = Ax.

Let x(t) denote the true solution, and consider for simplicity the time step n = 0. The
LTE is the size of the difference between x(h) and R(x0), where R is the RK iteration map
for step size h. Let y(t) denote the polynomial solution furnished by the collocation method
on [0, h], so by construction y0(t) = f(y(t)) at intermediate times t = t0,1, . . . , t0,s. It is
convenient to define the ‘defect’

�(t) := y0(t)� f(y(t)),

so by construction �(t0,i) = 0 for i = 1, . . . , s, and

y0(t) = f(y(t)) + �(t)

for all t 2 [0, h]. Moreover, define an error displacement

✏(t) := y(t)� x(t)

as a function of continuous time. We want to show that ✏(h) = O(hp+1).
Then by subtracting ODEs we obtain an ODE

✏0(t) = A✏(t) + �(t)

This ODE can be solved exactly by Duhamel’s principle :

✏(t) = eAt✏(0) +

Z
t

0
eA(t�⌧)�(⌧) d⌧,

as can be verified directly by differentiation, and remembering that the initial condition for
the displacement is ✏(0) = 0, we have in fact that

✏(h) =

Z
h

0
�(h, ⌧) �(⌧)| {z }

=:⇣(⌧)

d⌧, (17.9)

where �(t, ⌧) := eA(t�⌧), and ⇣(⌧) is defined as indicated
We can replace this integral with the quadrature formula at the cost of only O(hp+1)

error, i.e.,

✏(h) = h
sX

i=1

bi⇣(cih) +O(hp+1).

But by construction
⇣(cih) = �(h, cih)�(t0,i) = 0,

so in fact
✏(h) = O(hp+1),

as was to be shown.

81

17.5.2 Proof of order of accuracy: non-autonomous linear case

Now consider more generally the case

f(x, t) = A(t)x(t) + b(t).

Here we obtain, mutatis mutandi, the same equation 17.9, where now �(⌧1, ⌧0) denotes the
matrix that sends an initial condition u(⌧0) at time ⌧0 to the solution of u0(t) = A(t)u(t) at
time t = ⌧1.

In fact �(t, ⌧) can be defined as the solution of a matrix-valued differential equation
(

d

dt
�(t, ⌧) = A(t)�(t, ⌧)

�(⌧, ⌧) = I,

in which we view ⌧ as fixed, defining the initial time. One can then check directly that
indeed u(t) := �(t, ⌧)u(⌧) satisfies u0(t) = A(t)u(t).

Moreover, for a general inhomogeneous linear system

v0(t) = A(t)v(t) + g(t),

there is still a general Duhamel principle :

v(t) = �(t, 0)v(0) +

Z
t

0
�(t, ⌧)g(⌧) d⌧,

which can likewise be verified directly by differentiation.

17.5.3 Sketch in general case

In the case of general f , first let us reduce for simplicity to the autonomous case

x0(t) = f(x(t)),

which we can do guilt-free via the sum rule. We again have

y0(t) = f(y(t)) + �(t)

As we did for the proof of Dahlquist’s theorem (Theorem 21), we will try to reduce to the
non-autonomous linear case (even when the underlying equation is autonomous).

Indeed, subtracting equations we obtain

✏0(t) = A(t)✏(t) + g(t) + �(t),

where A(t) := Df(x(t)), �(t0,i) = 0, and kgk = O(k✏k2), with k · k here denoting the L1

norm on the interval [0, h]. Although k✏k is not O(hp+1), it is possible still to show that
k✏k = O(hs+1). Therefore after squaring, we see that kgk = O(h2s+2). But p 2s, so
kgk = O(hp+2), and the contribution is negligible for our purposes.

17.6 Gauss-Legendre methods

The orthogonal polynomials (see Appendix C) with respect to the weight function w ⌘ 1
on the interval [�1, 1] are called the Legendre polynomials. Let �1 < t1 < · · · < ts <
1 be the zeros of the s-th Legendre polynomial, which are called the Gauss-Legendre

82

quadrature nodes. Gauss-Legendre methods are derived by choosing nodes ci = (ti+1)/2,
i.e., shifting and scaling the Gauss-Legendre nodes to the interval [0, 1].

From Theorem 79, Gauss-Legendre quadrature is exact for polynomials of order up to
2s � 1. Likewise the quadrature rule on [0, 1] induced by the nodes c1, . . . , cs is exact for
polynomials up to order 2s� 1, and we have:

Theorem 51. Let ci = (ti + 1)/2 for i = 1, . . . , s, where ti 2 (�1, 1) is the i-th zero of the
Legendre polynomial of order s. Define

aij =

Z
ci

0
`j(⌧ ; c) d⌧, bi :=

Z 1

0
`i(⌧ ; c) d⌧.

Then the s-stage RK method defined by matrix A = (aij), weights b = (bi), and nodes
c = (ci) satisfies the sum rule c = A1 and is order-(2s) accurate.

Remark 52. These methods are called the Gauss-Legendre methods. Remarkably, the
Gauss-Legendre methods are A-stable for all s = 1, 2, The stability function is in fact
the (s, s)-Padè approximant of ez. The Wanner-Hairer-Nørsett theorem in turn guarantees
that this Padè approximant satisfies the condition for A-stability. However, we will prove
the A-stability of the Gauss-Legendre methods by different means in the next part, where
we shall see that they satisfy a stronger condition called algebraic stability .

83

My methods are really methods of
working and thinking; this is why they
have crept in everywhere anonymously.

E. Noether

Part IV

Geometric numerical integration
Besides some order-p accuracy and absolute stability, what more could we possibly ask of
a numerical method for ODEs? A lot more, it turns out. Many differential equations of
interest exhibit certain monotonicity or conservation properties, and the study of numerical
integrators that preserve such structure exactly is called geometric numerical integra-
tion . We will consider case studies for certain properties of major interest. In all of these
case studies, we are only scratching the surface of deep conversations.

18 Monotone systems

We have seen that linear systems of the form

x0(t) = �Ax(t),

where A is symmetric (or more generally Hermitian) positive definite are dissipative in
the loose sense that small perturbations are exponentially damped over time.

We can think of such systems as falling into a more general category of gradient flows

x0(t) = �rU(x(t)),

where U : Rd ! R is a convex function. Indeed, note that the linear case is recovered by
taking

U(x) =
1

2
x>Ax,

which is a convex function with gradient rU(x) = Ax. Such a system is also dissipative,
and the globally attractive fixed point is the minimizer of U , which is unique as long as U
is strictly convex.

The choice f(x, t) = rU(x) can be generalized considerably to a category of functions
of possibly non-gradient type called monotone mappings. We motivate their definition
in the following way.

Suppose that U is convex, and let x, y 2 Rd. Then by the definition of convexity

U(y) �U(x) + hrU(x), y � xi ,
U(x) �U(y) + hrU(y), x� yi .

Here and in the sequel h · , · i denotes an inner product on Rd, though the space itself can
of course be generalized. We will also use k · k to denote the norm induced by this inner
product via kxk2 = hx, xi.

84

By adding both inequalities we can cancel all the non-gradient terms, yielding

hrU(x)�rU(y), x� yi � 0.

Accordingly, we make the following definition (which accommodates dynamics in both real
and complex2 inner product spaces):

Definition 53. If V is an inner product space, we say that T : V ! V is monotone if

Re hT (x)� T (y), x� yi � 0

for all x, y 2 V . We say that the system

x0(t) = f(x(t), t)

is monotone if for every fixed t, the map �f(· , t) is monotone. Concretely, this means
that

Re hf(x, t)� f(y, t), x� yi 0

for all x, y 2 Fd and t 2 [0, T], where either F 2 {R,C}.

The big deal about monotone equations is that their flow is contractive, in the following
sense:

Theorem 54. Suppose that x0(t) = f(x(t), t) is a monotone system, and consider two
solutions u(t) and v(t) induced by initial conditions u0 and v0. The function

t 7! ku(t)� v(t)k2

is monotone non-increasing.

Proof. Simply compute
d

dt
ku(t)� v(t)k2 =

d

dt
hu(t)� v(t), u(t)� v(t)i

= hu0(t)� v0(t), u(t)� v(t)i+ hu(t)� v(t), u0(t)� v0(t)i
= 2Re hu(t)� v(t), u0(t)� v0(t)i
= 2Re hu(t)� v(t), f(u(t), t)� f(v(t), t)i
 0,

which implies the desired result.

What are some interesting monotone systems, besides gradient flows? Consider, for
example,

T (x) = rU(x) +Bx, (18.1)
where U : Rd ! R is strictly convex and B is real skew -symmetric (read: normal with
imaginary eigenvalues) and the inner product is the ordinary dot product. Then

hBx�By, x� yi = (x� y)>B(x� y) = 0,

which in turn implies that T is monotone. Note however that such T is not of gradient type!
Here the gradient term rU(x) is strictly dissipative, while the Bx term alone induces

length-preserving (isometric) dynamics. Indeed, note that the solution of x0(t) = Bx, is
x(t) = eBtx0, and eBt is an orthogonal matrix as long as B is skew-symmetric.

For the rest of this section, we concern ourselves with the design of numerical integrators
that, for monotone systems, preserve the structure of Theorem 54.

2For complex inner product spaces, we adopt the convention that the inner product is linear in the second
slot and conjugate-linear in the first slot.

85

18.1 Algebraic stability

Motivated by Theorem 54, we make the following definition:

Definition 55. We say that an RK method is algebraically stable if

kRh,t(u)�Rh,t(v)k ku� vk

holds for any u, v 2 Fd and any h > 0, t 2 [0, T], where Rh,t is the RK iteration map for
step size h starting from time t for a monotone system.

In fact algebraic stability is stronger than A-stability:

Theorem 56. An algebraically stable RK method is A-stable.

Proof. Suppose � 2 C with Re(�) 0. Then x0(t) = �x(t) is a monotone system (check
this!), following the same reasoning as in our justification that (18.1) is monotone, since it
is of ‘convex gradient plus isometric’ type.

Therefore Definition 55, applied to the case u = x 6= 0, v = 0, yields

kR(x)k kxk.

But R(x) = R(�̂)x, so we have that |R(�h)|kxk kxk. Since this holds for all x 6= 0 and all
� with Re(�) 0, it follows that |R(z)| 1 on the left half-plane. The maximum modulus
principle (cf. Theorem 47) in turn implies strict inequality on the strict left half-plane, and
A-stability follows.

An important object called the M matrix emerges from the study of algebraic stability:

Definition 57. For an RK method with RK matrix A and weights b, define the M matrix
as

M = diag(b)A+A> diag(b)� bb>.

We will always assume that A and b are purely real, so notice that M is real symmetric by
construction. Remarkably, if it is positive semidefinite, then the corresponding RK method
is algebraically stable:

Theorem 58. If the M matrix for a consistent RK method is positive definite and the
weights b1, . . . , bs � 0, then the corresponding RK method is algebraically stable.

Proof. The proof is, well...completely algebraic. But it requires a lot of notation.
Consider u, v 2 Fn and fix a current time t. We will compare R(u) and R(v) for a step

size h. Let k1, . . . , ks denote the slopes for the first of these RK steps and r1, . . . , rs the
slopes for the second. Define ‘intermediate values,’

ui = u+ h
sX

j=1

aijkj , vi = v + h
sX

j=1

aijrj , (18.2)

so
ki = f(ui, ti), ri = f(vi, ti),

where the intermediate times are defined ti = t+ cih, i = 1, . . . , s. (Note that these are not
the ‘usual’ discrete times tn, as we have already implicitly fixed a time step n in the context
of this discussion.)

86

Finally,

R(u) = u+ h
sX

i=1

biki, R(v) = v + h
sX

i=1

biri,

and with the notation set up we can finally compute:

kR(u)�R(v)k2 =

�����(u� v) + h
sX

i=1

bi(ki � ri)

�����

2

=

*
(u� v) + h

sX

i=1

bi(ki � ri), (u� v) + h
sX

i=1

bi(ki � ri)

+

= ku� vk2 + 2hRe

*
u� v,

sX

i=1

bi(ki � ri)

+
+ h2

�����

sX

i=1

bi(ki � ri)

�����

2

.

Therefore, defining zi := ki � ri, to show algebraic stability it is equivalent to show

2Re

*
u� v,

sX

i=1

bizi

+
+ h

�����

sX

i=1

bizi

�����

2

 0.

Now *
u� v,

sX

i=1

bizi

+
=

sX

i=1

bi hu� v, zii ,

and for any i, from (18.2)we have

u = ui � h
sX

j=1

aijkj , v = vi � h
sX

j=1

aijrj ,

hence by plugging in and taking real parts we obtain: .

Re

*
u� v,

sX

i=1

bizi

+
=

sX

i=1

biRe hui � vi, zii � h
sX

i,j=1

biaijRe hzj , zii .

The point of these manipulations is precisely to extract the expressions Re hui � vi, zii,
to which we can directly apply the definition of monotonicity, as

Re hui � vi, zii = Re hui � vi, f(ui, ti)� f(vi, ti)i 0,

and by nonnegativity of the bi as well as the fact that Re hzi, zji = Re hzj , zii, it follows that

Re

*
u� v,

sX

i=1

bizi

+
 �h

sX

i,j=1

biaijRe hzi, zji ,

hence it now suffices to show that
�����

sX

i=1

bizi

�����

2

� 2
sX

i,j=1

biaijRe hzi, zji 0

87

Let us expand the left-hand side as
�����

sX

i=1

bizi

�����

2

=
sX

i,j=1

bibjRe hzi, zji ,

hence it suffices to show that
sX

i,j=1

(2biaij � bibj)Zij � 0, (18.3)

where Z = (Zij) is a real symmetric matrix defined by

Zij := Re hzi, zji .

Then we can rewrite (18.3) as the condition that

Tr
⇥�
2diag(b)A� bb>

�
Z
⇤
� 0.

Moreover, since Z is real symmetric, we can replace
�
2diag(b)A� bb>

�
in the left-hand side

by its symmetrization

1

2

h�
2diag(b)A� bb>

�
+
�
2diag(b)A� bb>

�>i
= diag(b)A+A>diag(b)� bb> = M,

which in fact coincides with the M matrix.
Therefore our sufficient condition is that Tr[MZ] � 0. But in fact Z is a positive

semidefinite matrix, as can be observed by computing

w>Zw =
sX

i,j=1

wiwjRe hzi, zji = Re

*
sX

i=1

wizi,
sX

i=1

wizi

+
� 0,

and the trace of the product of real symmetric positive semidefinite matrices, so it suffices
that M is positive semidefinite, as was to be shown.

Note that no explicit RK method can be algebraically stable, because then it would be
A-stable, which we know to be impossible! But more directly, the diagonal of A is zero
for any explicit RK method, which implies that the diagonal of the M matrix is in fact
Mkk = �b2

k
. Since the weights must add up to 1, they cannot all be zero, and M has a

negative diagonal entry, which precludes it from being positive semidefinite.

18.2 Alegbraic stability of Gauss-Legendre methods

In fact, our good friends the Gauss-Legendre methods are all algebraically stable, hence in
particular A-stable, as we claimed earlier when we presented them. In fact, the M matrix
of a Gauss-Legendre method is in fact M = 0, which is in particular positive semidefinite.
Moreover the weights b can be shown to be nonnegative.

Lemma 59. For the Gauss-Legendre methods, the M matrix is M = 0.

Remark 60. I’m proud of this proof. It is a lot better than the one in Iserles’ book. This
remark is my victory lap.

88

Proof. Recall

aij =

Z
ci

0
`j(⌧ ; c) d⌧, bi =

Z 1

0
`i(⌧ ; c) d⌧.

We want to show that the matrix M = diag(b)A+A>diag(b)� bb> is zero. It is equivalent
to show that for any w = (w1, . . . , ws)> 2 Rs, we have w>Mw = 0. (To see this, note for
example via the spectral theorem that this would impy that all the eigenvalues of M are
zero.)

Now observe that

w>Mw = 2w>diag(b)Aw � (w>b)2

= 2
sX

i,j=1

wibiaijwj �

sX

i=1

wibi

!2

,

so we want to show that

2
sX

i=1

biwi

sX

j=1

aijwj

| {z }
=:L

want
=

sX

i=1

biwi

!2

| {z }
=:R

,

where we have defined L and R as the left- and right-hand sides, respectively, and we want
to show that L = R.

Now abusing notation slightly, let w(t) be the interpolating polynomial3 for the data
(ci, wi), i = 1, . . . , s, which can be writen

w(t) =
sX

i=1

wi`i(t; c),

attaining the values w(ci) = wi. Note that w is of degree s� 1.
Then

sX

j=1

aijwj =

Z
ci

0
wj`j(⌧ ; c) d⌧ =

Z
ci

0
w(⌧) d⌧ = W (ci),

where W is the antiderivative of w with W (0) = 0. Note that W is a polynomial of degree
s.

Then

L = 2
sX

i=1

biwi

sX

j=1

aijwj

= 2
sX

i=1

biwiW (ci)

= 2
sX

i=1

biw(ci)W (ci)

= 2
sX

i=1

biq(ci),

3This function has nothing to do with the weight function w in the theory of orthogonal polynomials.
I’m just running out of letters.

89

where q(⌧) := w(⌧)W (⌧) is a polynomial of degree 2s � 1. Therefore the Gauss-Legendre
quadrature integrates it exactly, and we have

L = 2

Z 1

0
w(⌧)W (⌧) d⌧.

Now since w = W 0, observe that (W 2)0 = 2wW , from which it follows that

L =

Z 1

0
(W 2)0(⌧) d⌧ = W (1)2 �W (0)2,

but W (0) = 0, and

W (1) =

Z 1

0
w(⌧) d⌧.

Therefore

L =

✓Z 1

0
w(⌧) d⌧

◆2

.

Meanwhile, since w is a polynomial of degree only s� 1, we have

sX

i=1

biwi =

Z 1

0
w(⌧) d⌧,

so L = R, as was to be shown.

Lemma 61. For the Gauss-Legendre methods, the weights b1, . . . , bs are nonnegative. In
fact they can be alternatively written as

bi =

Z 1

0
`i(u; c) du =

Z 1

0
[`i(u; c)]

2 du.

Proof. Note that `i(· ; c)2 is a polynomial of order 2s � 2, hence is integrated exactly by
Gauss-Legendre quadrature, and

Z 1

0
[`i(u; c)]

2 du =
sX

j=1

bj [`i(cj ; c)]
2 =

sX

j=1

bj(�ij)
2 =

sX

j=1

bj�ij = bi,

as was to be shown.

As a consequence of the previous two lemmas we our desired result.

Theorem 62. The Gauss-Legendre methods are algebraically stable, hence also A-stable.

19 Quadratic invariants

In this section, we discuss the conservation of quadratic forms, which, when conserved,
can be referred to as quadratic invariants. A quadratic form is a funcion of the form

Q(x) =
1

2
x⇤Sx.

90

Without loss of generality, the matrix S can be assumed to be Hermitian because the
replacement S (S + S⇤)/2 does not affect the quadratic form. In the real case, we can
write more specifically,

Q(x) =
1

2
x>Sx,

where S is real symmetric. It is useful to observe once again that

rQ(x) = Sx.

For simplicity, we will assume the real case from now on.
We are interested in systems x0(t) = f(x(t), t) that conserve Q, i.e, for which Q(x(t))

is constant with respect to t. Of course such conservation is equivalent to

0 =
d

dt
Q(x(t)) = rQ(x(t)) · x0(t) = f(x(t), t) · (Sx(t)),

hence such a conservation law requires

f(x, t) · (Sx) = 0 (19.1)

for all x 2 Rd and t 2 [0, T].
The case S = I is probably the most interesting as it corresponds to dynamics that

preserve the length of x(t), i.e., fix the trajectory to lie within some sphere in Rd. If the
signature of S (i.e., the number of positive eigenvalues of S) is d, then it is possible to reduce
the case S = I by a change of coordinates (cf. Sylvester’s law of inertia). Other choices for
S, such as the Minkowski metric, might be motivated by considerations in special/general
relativity.

19.1 The M matrix returns!

We are interested in RK methods that respect the structure of a quadratic invariant. In
fact, as long as the familiar M matrix

M = diag(b)A+A>diag(b)� bb>

satisfies M = 0, such invariants are conserved!

Theorem 63. Suppose that a system admits a quadratic invariant induced by a real sym-
metric matrix S in the sense of (19.1). Then an RK method whose M matrix satisfies
M = 0 preserves this structure in the sense that

Rh,t(x)
> SRh,t(x) = x>Sx

for any x 2 Rd and any h > 0, t 2 [0, T], where Rh,t is the RK iteration map for step
size h starting from time t. In particular, the Gauss-Legendre methods conserve quadratic
invariants.

Proof. Fix a current state x, current time t, and step size h > 0, and write

R(x) = x+ h
sX

i=1

biki.

91

Then compute

R(x)> SR(x) = x>Sx+ 2h
sX

i=1

bik
>
i
Sx+ h2

sX

i,j=1

bkblk
>
i
Skj .

Therefore we want to show that

2
sX

i=1

bik
>
i
Sx

| {z }
=:L

want
= �h

sX

i,j=1

bkblk
>
i
Skl

| {z }
=:R

,

where we have defined L and R as the left- and right-hand sides, respectively, and now want
to show that L = R.

As in our proof of algebraic stability (Lemma 59), let

xi = x+ h
sX

j=1

aijkj , i = 1, . . . , s,

so
ki = f(xi, ti),

where ti := t+ cih, and

x = xi � h
sX

j=1

aijkj .

Then we can substitute this formula to obtain
sX

i=1

bik
>
i
Sx =

sX

i=1

bik
>
i
Sxi � h

sX

i,j=1

aijbik
>
i
Skj .

Now the first of the terms in the right-hand side is zero by (19.1), as

k>
i
Sxj = f(xi, ti) · (Sxi) = 0.

Meanwhile the second term can be packaged as �Tr[diag(b)AZ], where Y = (k>
i
Skj) is real

symmetric.
Then it follows that

L = �2Tr[diag(b)AY]

= �Tr[diag(b)AZ]� Tr[(diag(b)A)>Y]

= �Tr
⇥�
diag(b)A+A>diag(b)

�
Y
⇤
.

Now
0 = M = diag(b)A+A>diag(b)� bb>,

so
diag(b)A+A>diag(b) = bb>,

and

2
sX

i=1

bik
>
i
Sx = �Tr[bb>Z] = �b>Zb = R,

as was to be shown.

92

19.2 Unitary flows

The criterion (19.1) for a quadratic invariant can be viewed as a manifold constraint for the
dynamics. More generally, for a submanifold M ⇢ Fn, if

f(x, t) 2 TxM,

i.e., f(x, t) lies in the tangent space TxM to the manifold M at the point x 2 M, for
arbitrary x 2M and t 2 [0, T], then the dynamics can never leave M.

In general, it is not possible to define a single integrator that preserves all possible
manifold constraints. However, there is another important category of manifold constraints
preserved by the Gauss-Legendre methods.

We will now consider Cd⇥d matrix-valued systems of the form

U 0(t) = F (U, t)U(t),

where F (U, t) takes values in the set of skew-Hermitian matrices. Aficionados of Lie group
theory will notice that the right-hand side defines the most general element of the tangent
space of the unitary group

Ud := {U 2 Cd⇥d : UU⇤ = I}

at the point U(t). These are called unitary flows, and the real case of orthogonal flows
can be recovered by similar considerations. Unitary flows are, for example, fundamental to
the Schrödinger picture of quantum mechanics, where F (U, t) = � 1

i~H(t), and H(t) is a
(possibly time-dependent) Hamiltonian, which is always a Hermitian matrix.

Indeed, one can check directly that for U 2 Ud

(UU⇤)0 = U 0U⇤ + U(U 0)⇤ =

= F (U, t)UU⇤ + U (F (U, t)U)⇤

= F (U, t)UU⇤ + UU⇤F (U, t)⇤

= F (U, t) + F (U, t)⇤,

by the skew-Hermiticity of F (U, t), so unitarity is preserved by the dynamics.
In fact, the following theorem holds, as can proved similarly to Theorem 63:

Theorem 64. The Gauss-Legendre methods (and more generally any method with M = 0)
conserve the unitarity / orthogonality constraint of unitary / orthogonal flows.

20 Hamiltonian systems

A Hamiltonian system is a system of ODEs with a state variable

x(t) =

✓
p(t)
q(t)

◆
2 R2d

that has important internal structure. The variable p(t) 2 Rd is often called the momentum
and q(t) 2 Rd the position , and we shall see the motivations for these names later. (Note
carefully that p is not for ‘position’ !)

The dynamics are defined by

p0 = �rqH(p, q), q0 = rpH(p, q), (20.1)

where H(p, q) is a function called the Hamiltonian (energy).

93

20.1 Separable Hamiltonians

A Hamiltonian system is specified by a choice of Hamiltonian. The most significant (but
not only) examples of Hamiltonians are separable Hamiltonians, which can be written

H(p, q) = K(p) + U(q), (20.2)

where K is a kinetic energy (which depends only on momentum) and U is a potential
energy (which depends only on position).4

Often K(p) is a positive definite quadratic form

K(p) =
1

2
p>M�1p,

where M is a mass matrix , which is always symmetric positive definite. (We use the bold
notation to distinguish from the M matrix associated to an RK method, which will make
further appearances!) It is often further the case that M = mI, where m is a scalar mass,
and in this special case, the Hamiltonian dynamics reduce to

p0 = �rU(q), q0 =
1

m
p.

If the position variable is q, then indeed q0 denotes the velocity, which should intuitively
correspond to p/m. In this case, we can view the Hamiltonian system as a second-order
equation for the position

mq00 = �rU(q),

from which the momentum can be recovered as p = mq0. Observe that this equation carries
the interpretation of Newton’s second law: force (�rU) equals mass times acceleration.

Often U is convex or even strongly convex, and in the simplest such case U(q) = 1
2q

>Aq,
where A is symmetric positive definite, and we have the further simplification

mq00 = �Aq.

After diagonalization, we can even pass to the scalar case,

mq00 = �q,

where > 0 gains the interpretation of a spring constant.
Even for separable Hamiltonians, the abstraction of the more general Hamiltonian struc-

ture provides a productive point of view, as we shall see.

20.2 Energy conservation

Energy is conserved by Hamiltonian systems:

Lemma 65. H(p(t), q(t)) is constant for a solution p(t), q(t) of a Hamiltonian system
(20.1).

Proof. Simply differentiate
d

dt
H(p(t), q(t)) = rpH(p(t), q(t)) · p0(t) +rqH(p(t), q(t)) · q0(t)

= rpH(p(t), q(t)) · [�rqH(p(t), q(t))] +rqH(p(t), q(t)) · [rpH(p(t), q(t))]

= 0.

4A common alternative notation for the kinetic energy is T (p), and meanwhile V (q) is a common alter-
native for the potential energy.

94

20.3 Symplectic structure

In fact, although energy conservation is an important feature of Hamiltonian systems, they
exhibit a more complicated structure that is more important (and more generally tractable)
to preserve.

Let 't : R2d ! R2d be the flow map for the Hamiltonian system (20.1), i.e., the map

which sends an initial condition
✓

p
q

◆
to the value of the solution of (20.1) at time t.

Definition 66. Let J denote the matrix 2d⇥ 2d matrix

J =

✓
0 I
�I 0

◆

Given a domain ⌦ ⇢ R2d and a map ' : ⌦ ! R2d, define � := D', which is a map
⌦! R2d⇥2d. Then ' is called symplectic if �>(y)J�(y) = J for all y 2 R2d.

As in this definition, we will adopt the notation y =

✓
p
q

◆
going forward. In this

vectorized notation, we can write the Hamiltonian system (20.1) more compactly as

y0(t) = J�1rH(y), (20.3)

where rH(y) is the full gradient

rH(y) =

✓
rpH(p, q)
rqH(p, q)

◆
,

and we observe that
J�1 =

✓
0 �I
I 0

◆
= J> = �J.

Theorem 67 (The Poincaré theorem). If H is C2, then the flow map 't of the Hamiltonian
system (20.3) is symplectic.

Proof. Define �t := D't. Evidently '0 = Id, hence �0 ⌘ I2d, and �>
0 (y)J�0(y) = J for all

y. Therefore it will suffice to show that for any fixed y, d

dt

⇥
�>

t
(y)J�t(y)

⇤
= 0.

First it is useful to observe directly from (20.3) that

d

dt
't(y) = J�1rH('t(y)),

hence we can compute (by commutation of partial derivatives)

d

dt
�t(y) = Dy

d

dt
't(y)

= Dy

⇥
J�1rH('t(y))

⇤

= J�1Dy [rH('t(y))]

= J�1r2H('t(y))Dy't(y)

= J�1r2H('t(y))�t(y),

or in summary
d�t(y)

dt
= J�1r2H('t(y))�t(y).

95

Now compute

d

dt

⇥
�>

t
(y)J�t(y)

⇤
=

d�t

dt
(y)

�>
J�t(y) + �>

t
(y)J

d�t

dt

= �>
t
(y)r2H('t(y))

⇥
J�1

⇤>
J

| {z }
=�I

�t(y) + �>
t
(y) JJ�1
| {z }
=I

r2H('t(y))�t(y)

= ��>
t
(y)r2H('t(y))�t(y) + �>

t
(y)r2H('t(y))�t(y)

= 0,

as was to be shown.

Let us examine the notion of symplecticity in a bit more detail. Take the case d = 1

first for simplicity. Then if ' =

✓
'1

'2

◆
: R2 ! R2 is symplectic, this means that � = D'

satisfies
✓

0 1
�1 0

◆
=

✓
@y1'1 @y2'2

@y2'1 @y2'2

◆✓
0 1
�1 0

◆✓
@y1'1 @y2'1

@y1'2 @y2'2

◆

=

✓
@y1'1 @y1'2

@y2'1 @y2'2

◆✓
@y1'2 @y2'2

�@y1'1 �@y2'1

◆

=

✓
0 [@y1'1@y2'2 � @y1'2@y2'1]

� [@y1'1@y2'2 � @y1'2@y2'1] 0

◆

=

✓
0 det(D')

� det(D') 0

◆

=

✓
0 det(�)

� det(�) 0

◆

Hence symplecticity in this case is equivalent to area (and orientation) conservation of the
map � = D', i.e., det(�) ⌘ 1. In higher dimensions d > 1, symplecticity corresponds to
conservation of a sum of oriented areas.

However, in general, if we consider the symplecticity condition �>J� ⌘ J and take
determinants of both sides, we see that we must have det(�)2 ⌘ 1, i.e., | det(�)| ⌘ 1, and
symplectic maps always conserve (2d)-dimensional volume. (Note that symplecticity is a
much stronger condition in general than mere volume preservation!)

Amazingly, the same M = 0 criterion on a RK method is a sufficient condition for
preserving symplectic structure.

Theorem 68. The Runge-Kutta iteration map of an RK method satisfying M = 0 is
symplectic for Hamiltonian systems.

A proof, similar in style to the proof of Theorem 63, etc., can be found in Iserles’ textbook
(Theorem 5.7).

When an integrator has a symplectic iteration / numerical flow map for Hamiltonian
systems, we simply say that the integrator is symplectic.

20.4 Partitioned Runge-Kutta methods for separable Hamiltonian
systems

Unfortunately, as we have discussed earlier, then sufficient condition M = 0 for preserving
symplecticity cannot be satisfied by any explicit method. However, for separable Hamil-

96

tonian systems, a generalization of the typical RK method can yield explicit symplectic
integrators.

20.4.1 General partitioned RK methods

To this end, we introduce the notion of a partitioned Runge-Kutta method . Given a
splitting of our state variable

x =

✓
u
v

◆

into two blocks, we can view an arbitrary system as being defined by the equations

u0(t) = F (u(t), v(t), t), v0(t) = G(u(t), v(t), t)

for appropriately defined F and G.
A partitioned RK method is defined by two RK matrices A = (aij) and Â = (âij), two

vectors of weights b = (bi) and b̂ = (b̂i), and two vectors of ndoes c = (ci) and ĉ = (ĉi).
We will assume for simplicity the natural sum rule c = A1 and ĉ = Â1 which allows us to
reduce from the general case to the autonomous case as before.

Note that we can think of a partitioned RK method as being specified by two independent
Butcher tableaus:

c A

b>
ĉ Â

b̂>

Then given a state un, vn a partitioned RK method requires us to solve the simultaneous
equations

ki = F

0

@un + h
sX

j=1

aijkj , vn + h
sX

j=1

âij k̂j , tn + cih

1

A

k̂i = G

0

@un + h
sX

j=1

aijkj , vn + h
sX

j=1

âij k̂j , tn + ĉih

1

A , i = 1, . . . , n,

(20.4)

in terms of which the next values un+1, vn+1 are determined as

un+1 = un + h
sX

i=1

biki, vn+1 = vn + h
sX

i=1

b̂ik̂i.

We can associate to a partitioned RK method an appropriate numerical flow map
Rh,t(u, v) such that (un+1, vn+1) = Rh,tn(un, vn).

20.4.2 Consistency conditions

It is not hard to verify that the condition for a partitioned RK method to be consistent
(equivalently, first-order accurate) is

b>1 = b̂>1 = 1.

Meanwhile, the condition for second-order accuracy is

b>Â1 = b̂>A1 =
1

2
,

97

which again resembles the second-order accuracy condition for ordinary RK methods.
Finally, we remark that if an extended sum rule c = A1 = Â1 = ĉ is satisfied, then the

condition for third-order accuracy is simply

b>Â21 = b̂>A21 =
1

6
.

20.4.3 Symplecticity

Consider the following notion of an M matrix for a partitioned RK method,

M = diag(b)Â+A>diag(b̂)� bb̂>. (20.5)

Remarkably, this matrix yields a simple sufficient condition for an integrator to be symplec-
tic.

Theorem 69. If the matrix M defined in (20.5) is the zero matrix and b = b̂ for a partitioned
RK method, then the method is symplectic. Restricting to the case of separable Hamiltonians,
the condition M = 0 alone is sufficient for symplecticity of the integrator.

Proof. See the textbook of Hairer, Lubich, and Wanner (Theorem 4.6).

20.4.4 Separable Hamiltonian case

Of particular interest is the case where

F (u, v, t) = f(v), G(u, v, t) = g(u), (20.6)

which covers the case of separable Hamiltonian systems (20.2) by identifying u = p, v = q,
and f(q) = �rU(q), g(p) = rK(p), defining the system

p0(t) = �rU(q(t)), q0(t) = rK(p(t)).

In the important special case K(p) = 1
2p

>M�1p of quadratic kinetic energy, we have q0(t) =
M�1p, and even more specifically when M = mI, we have q0(t) = p/m.

Note that in the case of quadratic kinetic energy, we can view the dynamics as defined
by the second-order system of ODEs

q00(t) = �M�1rU(q(t)) (20.7)

for q alone.
In the case (20.6), the RK equations (20.4) simplify to

ki = f

0

@vn + h
sX

j=1

âij k̂j

1

A

k̂i = g

0

@un + h
sX

j=1

aijkj

1

A , i = 1, . . . , s,

or in the case of separable Hamiltonian systems we may write more suggestively

ki = �rU

0

@qn + h
sX

j=1

âij k̂j

1

A

k̂i = rK

0

@pn + h
sX

j=1

aijkj

1

A , i = 1, . . . , s.

98

20.4.5 Symplectic Euler

Consider the case s = 1, specified by the following pair of Butcher tableaus:

1 1
1

0 0
1

Note that these are precisely the Butcher tableaus for the implicit and explicit Euler
methods, respectively. However, together they define a partitioned RK method satisfying
M = 0 (with M defined as in (20.5)). Moreover, it is easy to verify that the first-order but
not second-order consistency conditions are satisfied. Thus the method, which is called the
symplectic Euler method , is first-order accurate and indeed symplectic.

In the case of a separable Hamiltonian, the method is in fact explicit, as we can verify by
writing out the RK equations. Simply write k = k1 and k̂ = k̂1 for simplicity, since s = 1.
Then we have

k = �rU(qn), k̂ = rK(pn + hk),

pn+1 = pn + hk, qn+1 = qn + hk̂.

Note that k is determined explicitly, and in terms of k now fixed, we have that k̂ is now also
determined explicitly.

Given pn, qn, we can write the symplectic Euler pseudocode simply as:

• pn+1 = pn � hrU(qn)

• qn+1 = qn + hrK(pn+1)

20.4.6 Störmer-Verlet

In the case s = 2, the Störmer-Verlet method is specified by the pair of Butcher tableaus:

1/2 1/2 0
1/2 1/2 0

1/2 1/2

0 0 0
1 1/2 1/2

1/2 1/2

It can be readily verified that again M = 0 (hence the method is symplectic) and that
moreover the method is second-order accurate.

In the case of a separable Hamiltonian, the method is again explicit. Let us write out the
RK equations:

k1 = �rU(qn), k2 = �rU(qn +
h

2
k̂1 +

h

2
k̂2),

k̂1 = rK(pn +
h

2
k1), k̂2 = rK(qn +

h

2
k1),

pn+1 = pn +
h

2
k1 +

h

2
k2, qn+1 = qn +

h

2
k̂1 +

h

2
k̂2.

Then observe that (1) k1 is determined explicitly, (2) k̂ := k̂1 = k̂2 is determined explicitly
once k1 is fixed, and (3) k2 is determined explicitly once k̂1, k̂2 are fixed.

Given pn, qn, we can write the Störmer-Verlet pseudocode simply as:

• k1 = �rU(qn)

99

• k̂ = rK(pn + h

2k1)

• qn+1 = qn + hk̂

• k2 = �rU(qn+1)

• pn+1 = pn + h

2 (k1 + k2)

It is sometimes conventional to define pn+1/2 := pn � h

2rU(qn) = pn + h

2k1, yielding the
alternative, more suggestive implementation:

• pn+1/2 = pn � h

2rU(qn)

• qn+1 = qn + hrK(pn+1/2)

• pn+1 = pn+1/2 � h

2rU(qn+1)

Further observe that (substituting n n � 1 in the pseudocode), we obtain the equations
pn�1/2 = pn�1 � h

2rU(qn�1), qn = qn�1 + hrK(pn�1/2), and pn = pn�1/2 � h

2rU(qn).
Solving these for pn�1, qn�1, and pn�1/2, respectively, and then reversing the order of the
equations, we see that we can integrate ‘backward in time’ explicitly as

• pn�1/2 = pn � h

2rU(qn)

• qn�1 = qn � hrK(pn�1/2)

• pn�1 = pn�1/2 � h

2rU(qn�1)

In the setting where K is a quadratic form, i.e., K(p) = 1
2p

>M�1p, the method simplifies to
the original (historical setting) of Verlet integration in the following fashion. First note
that in this case, rK(p) = M�1p. , so we have k̂ = M�1pn+1/2.

qn+1 � 2qn + qn�1 = hrK(pn+1/2)� hrK(pn�1/2)

= hM�1(pn+1/2 � pn�1/2)

= �h2M�1rU(qn),

or more compactly
qn+1 � 2qn + qn�1 = �h2M�1rU(qn),

which can be viewed as a linear multistep method for the second-order system (20.7). By
analogy to the LMM that we called the leapfrog/midpoint method for first-order systems,
this method and the Störmer-Verlet method by extension are often referred to as the leapfrog
method/integrator. Note the distinction with caution! Moreover, note with further caution
that the leapfrog integrator as an interpretation of Störmer-Verlet only makes sense in the
setting of quadratic kinetic energies.

100

If I have had any success in
mathematical physics, it is, I think,
because I have been able to dodge
mathematical difficulties.

J. W. Gibbs

Part V

Stochastic differential equations and
Monte Carlo sampling
In this part we will primarily be interested in Itô diffusion processes which can be
denoted

dX(t) = b(X(t)) dt| {z }
"drift term"

+�(X(t)) dB(t)| {z }
"diffusion term"

. (20.8)

This is a stochastic differential equation (SDE), the meaning of which we shall now try
to make clear. We comment that the notation Xt and Bt are much more common, but we
want to maintain the subscript notation for indexing temporal discretization, to maintain
consistency with our treatment of ordinary differential equations.

Here, for each t � 0, X(t) is a random variable taking values in a state space Rd. The
collection {X(t) : t � 0} is a stochastic process, which can be understood concretely as
a recipe for producing any joint random varibable of the form (X(t1), . . . , X(tk)) 2 Rd⇥k.
Meanwhile b : Rd ! Rd is a vector field on Rd, and � : Rd ! Rd⇥d is a matrix field on Rd.
Finally, Bt is a Brownian motion , which is a stochastic process whose meaning in this
context we will clarify below.

We will only worry about ‘autonomous SDEs’ in the sense that b and � do not have any
additional dependence on the time variable t.

21 Understanding the SDE

Formally, dividing by the infinitesimal dt, the equation (20.8) is meant to evoke the differ-
ential equation

dX

dt
(t) = b(X(t)) + �(X(t))

dB

dt
(t).

If we view the Brownian motion B(t) as an ordinary function (by drawing a sample path
from the stochastic process that is the Brownian motion), this has the appearance of an
ordinary differential equation that we can solve for Xt. However, the sample paths of a
Brownian motion B(t) are not in fact differentiable, so such an interpretation does not
directly make sense.

The meaning of (20.8) can best be understood concretely from the point of view of
numerical discretization. Consider a step size h > 0, and define

Xn+1 = b(Xn)h+ �(Xn)Zn+1

p
h, (21.1)

101

where the Zn, n = 1, 2, . . ., are independent and identically distributed standard multi-
variate normal random variables, i.e., Zn ⇠ N (0, Id). This expression defines a discrete-
time stochastic process {Xn : n = 0, 1, 2, . . .}. This in fact defines the so-called Euler-
Maruyama scheme for solving (20.8). In a certain sense, the solution of (20.8) can be
defined as a limit of the discrete-time solution (21.1) in the limit h ! 0, where we view
X(tn) = X(nh) ⇡ Xn.

Consider first the case b ⌘ 0 and � ⌘ I, yielding the SDE dX(t) = dB(t). The notation
suggests that the solution ought to be the Brownian motion Bt, and we can in fact take
the Euler-Maryuama scheme for (20.8) in this case as defining the Brownian motion on a
discrete time grid. To wit, we can construct

B(tn) = Bn =
p
h

nX

j=1

Zj .

Then as a sum of independent normal random variables, we can compute Bn ⇠ N (0, nhId).
Moreover, the increments B(tn+1)�B(tn) satisfy B(tn+1)�B(tn) = Zn+1 ⇠ N (0, hId), and
more generally, for m � n we have Bm�Bn ⇠ N (0, (m�n)hId). It is for this reason that we
can discretize (20.8) by replacing dX(tn) Xn+1�Xn, dt h, dB(tn) Bn+1�Bn = Zn,
yielding precisely (21.1).

22 What is the goal?

In principle, we can imagine solving (20.8) by first ‘setting a random seed for the universe,’
which amounts to fixing a deterministic sample path of the Brownian motion B(t). Then
we can pick a small step size h > 0, define Zn+1 := B(tn+1) � B(tn) for all n = 1, 2, . . .,
construct a discrete-time solution of (20.8) via (21.1), interpolate as needed to extend to
continuous time, and then finally take a limit of this procedure as h ! 0 to construct a
continuous-time solution X(t) for this fixed random seed.

This actually makes sense, but if we ask ‘how accurate is our discretization’ from this
point of view, we will be disappointed. As mentioned above the Brownian motion is not
differentiable, and in fact it is only ↵-Hölder continuous for ↵ 2 [0, 1/2). At the end of
the day, this means that after setting a random seed, for a fixed sample path, the order
of accuracy of numerical integration is going to be at best O(h1/2), and the notion of a
higher-order scheme does not make sense from this point of view.

In discretizing an SDE, the most productive goal is not to approximate individual sample
paths with high orders of accuracy, but rather to treat the stochastic process more holistically
and preserve its statistics to higher orders of accuracy. This leads us to the discussion of
the infinitesimal generator, which is fundamental to the understanding of diffusions.

23 Infinitesimal generator

The infinitesimal generator of a continuous-time stochastic process is an operator A on
functions f : Rd ! R, meaning that for any such f , the object Af is also a function
Rd ! R, defined specifically by

Af(x) = lim
h!0+

E

f(X(h))� f(x)

h

����X(0) = x

�
.

The conditioning on the event X(0) = x can alternatively be understood as viewing our
stochastic process as being deterministically initialized with X(0) = x. The generator can

102

be viewed in some sense as a limit of stochastic difference quotient, but importantly the
limit takes place after we take an expectation value!

Going forward, to simplify the calculations we will focus on the case in which the noise
term of the SDE is uniformly isotropic, i.e., abusing notation somewhat � ⌘ �I, where � is
a scalar.

In this case, the generator can be computed using a second-order Taylor expansion of f
about x:

f(X(h)) = f(x)+rf(x) · (X(h)� x)+
1

2
(X(h)� x)>r2f(x)(X(h)� x)+O(h3/2), (23.1)

where in bounding the remainder we have crucially used the fact that X(h)� x = O(h1/2).
Then we can substitute via (21.1) and the fact that X0 = x,

X(h) = X1 +O(h3/2) = x+ hb(x) + �
p
hZ +O(h3/2),

where we use without proof the fact that the LTE of the Euler-Maruyama scheme is O(h3/2),
and Z ⇠ N (0, Id).

Substituting into (23.1), we find that

f(X(h))� f(x)

h
= rf(x) · b(x) + �p

h
rf(x) · Z +

�2

2
Z>r2f(x)Z +O(

p
h),

and importantly, after taking an expectation, the divergent (second) term on the right-
hand side as h ! 0 drops out due to the fact that E[Z] = 0. Meanwhile Z>r2f(x)Z =
Tr[r2f(x)ZZ>], and E[ZZ>] = Id by the definition of the standard normal random variable,
so we obtain

E

f(X(h))� f(x)

h

�
= b(x) ·rf(x) + �2

2
Tr
⇥
r2f(x)

⇤
+O(

p
h),

and consequently

Af(x) = b(x) ·rf(x) + �2

2
�f(x), (23.2)

where � =
P

d

i=1
@
2

@x
2
i

is the Laplacian operator. Sometimes one might write A more com-
pactly as

A = b ·r+
�2

2
�.

More generally, for general diffusion terms �(x), one can compute

Af(x) = b(x) ·rf(x) + 1

2
Tr
⇥
⌃(x)r2f(x)

⇤

=
dX

i=1

bi(x)
@f

@xi

(x) +
1

2

dX

i,j=1

⌃ij(x)
@2f

@xi@xj

where ⌃(x) := �(x)�(x)>.

24 Fokker-Planck equation

For every time t, the random variable X(t) has a probability density function ⇢(x, t), which
satisfies ⇢(x, t) � 0 and

R
⇢(x, t) dx = 1. How does this probability density evolve over time?

103

In fact it satisfies a partial differential equation called a Fokker-Planck equation , which
can be understood by means of the infinitesimal generator.

Note that for arbitrary smooth f with sufficient decay at infinity, we have

E[f(X(t))] =

Z
f(x)⇢(x, t) dx.

Then it follows that

E

f(X(t+ h))� f(X(t))

h

�
=

Z
f(x)

⇢(x, t+ h)� ⇢(x, t)
h

dx. (24.1)

We can write

E

f(X(t+ h))� f(X(t))

h

�
=

Z
E

f(X(t+ h))� f(x)

h

����X(t) = x

�
⇢(x, t) dx.

Note that

E

f(X(t+ h))� f(x)

h

����X(t) = x

�
= E

f(X(h))� f(x)

h

����X(0) = x

�

since the SDE (20.8) is autonomous, so taking the limit h! 0 of (24.1) we obtain accordingly
that Z

Af(x)⇢(x, t) dx =

Z
f(x)

@⇢

@t
(x, t) dx.

If we let A⇤ denote the adjoint operator of A, i.e., the operator such that
Z

A�(x) (x) dx =

Z
�(x)A⇤ (x) dx

for all smooth functions �, with sufficient decay at infinity, then it follows that
Z

f(x)A⇤⇢t(x) dx =

Z
f(x)

@⇢

@t
(x, t) dx,

where we define ⇢t(x) = ⇢(x, t) to view ⇢t as a function Rd ! R for each fixed time t.
Recalling that f was arbitrary, it in turn follows that

@⇢t
@t

= A⇤⇢t, (24.2)

and this is the abstract form of the Fokker-Planck equation.
It remains to compute A⇤ explicitly as a differential operator in the case of a diffusion.

For simplicity again let us restrict to the case � ⌘ �I, so recall from (23.2) that

Af(x) = b(x) ·rf(x) + �2

2
�f(x)

for all f .
Let us compute the adjoint as follows, letting �, be arbitrary with sufficient decay at

infinity:
Z

A�(x) (x) dx =

Z
[b(x) ·r�(x)] (x) dx+

�2

2

Z
��(x) (x) dx

= �
Z
�(x)r · (b(x) (x)) dx+

�2

2

Z
�(x)� (x) dx

=

Z
�(x)

�r · (b(x) (x)) + �2

2
� (x)

�
dx

104

where we have integrated by parts in the second line (once in the first term, twice in the
second term), using the fact that the boundary terms drop out by decay at infinitity. Here
r· denotes the divergence of a vector field.

We deduce that the formula for the adjoint is

A⇤g(x) = �r · (b(x)g(x)) + �2

2
�g(x),

and the Fokker-Planck equation can be written concretely as

@⇢t
@t

(x) = �r · (⇢t(x)b(x)) +
�2

2
�⇢t(x),

or
@⇢t
@t

= �r · (⇢tb) +
�2

2
�⇢t

for short. Note that the Fokker-Planck equation is a parabolic PDE.
Note that the first term alone describes the transport of probability density due to

the drift term b(X(t)) dt, and the second term describes the diffusion of probability due
to the diffusion term � dB(t). If � = 0, we are left with a transport equation which can
be solved directly by the method of characteristics in terms of the original deterministic
ordinary differential equation. If b ⌘ 0 and � = 1, we are left with the heat equation, which
describes the diffusion of probability in a Brownian motion without drift.

Generically, if the drift term traps trajectories within a compact region (with high prob-
ability) one expects the limit ⇢1 = limt!1 ⇢t to exist, and this is the probability density
function of the so-called stationary distribution or invariant measure of the stochas-
tic process. In fact one even expects that @⇢t

@t
! 0 as t ! 1, as the rate of change of the

converging distribution also slows down. This establishes formally that ⇢1 should satisfy
the elliptic PDE

�r · (⇢1b) +
�2

2
�⇢1 = 0 (24.3)

with zero boundary condition at infinity.

24.1 Overdamped Langevin dynamics

Of very special interest is the case of a conservative vector field b(x) = �rU(x). In
this case, assuming again � ⌘ �I, the (20.8) describe the so-called overdamped Langevin
dynamics.

In this case, the stochastic process is reversible (a notion that we will not define in
this course), and the PDE (24.3) for the invariant distribution ⇢1 can be solved explicitly.
In order for the solution to be integrable (so that it can be normalized to have a total
probability mass of 1), we will see that U must grow sufficiently fast at infinity, which
intuitively means that the force �rU it traps trajectories within a compact region with
high probability.

In the case b = �rU , denoting ⇢ = ⇢1 for simplicity, (24.3) becomes

�2

2
�⇢+r⇢ ·rU + ⇢�U = 0.

Plugging in the ansatz ⇢ = e�V and solving for V , we obtain
✓
��

2

2
�V +

�2

2
|rV |2 �rV ·rU +�U

◆
e�V = 0.

105

Observe that if we take V = 2
�2U , everything cancels, therefore a solution is given by

⇢ = e�
2U
�2 .

Observe that scalar multiplication preserves satisfaction of (24.3), so we can take ⇢ to be
the unique normalized solution

⇢ =
e�2U/�

2

R
e�2U/�2 dx

Typically, in the context of Langevin dynamics, one adopts the convention � =
p
2/�,

where � 2 (0,1) is a quantity known in statistical mechanics as the inverse temperature .
This way, the SDE reads as

dX(t) = �rU(X(t)) +
p
2/� dB(t),

and the stationary distribution reads as

⇢(x) =
e��U(x)

Z
, Z =

Z
e��U(x) dx.

Here the normalizing constant Z is called the partition function .
We will return to the overdamped Langevin dynamics later from the point of view of

Markov chain Monte Carlo sampling, where they can be used as a tool for sampling from
arbitrary probability densities.

25 How to construct higher-order schemes

We have already seen an example of a scheme for solving SDEs, but now we will return
to the subject from the point of view of the Fokker-Planck equation. As we said, it is not
reasonable to expect high orders of accuracy pathwise.

However, for fixed h > 0, we can view our numerical integrator itself as defining a
stochastic process {Xn : n = 0, 1, . . . , }. Assume that X0 and X(0) are identically dis-
tributed, so the numerical and exact stochastic processes share the same initial distribution.
(Often the initial distribution is simply deterministically X0 = x0 for some x0 2 Rd.) Then
while we cannot ask that Xn = X(tn) + O(hp) almost surely, we can ask, for arbitrary
f : Rd ! R, that

E[f(Xn)]� E[f(X(tn))] = O(hp).

It is natural to define a notion of accuracy as the worst-case discrepancy between these
two expectations over a sufficiently rich class of f , suitably bounded so that the worst case
discrepancy is not unbounded. If we restrict to f 2 Lip1(Rd), the set of 1-Lipschitz functions
on Rd, then this worst-case discrepancy is in fact the 1-Wasserstein distance

W1(⇢(· , tn), ⇢n) = sup
f2Lip1(Rd)

⇢
E[f(Xn)]� E[f(X(tn))]

�

between the exact density ⇢(· , tn) and the density ⇢n associated to the numerical solution
Xn at the n-th time step. (This is the dual formulation of the usual definition of the 1-
Wasserstein distance in terms of optimal transport, the details of which are beyond the
scope of this course.)

106

One can then hope for

sup
n=0,...,N

W1(⇢(· , tn), ⇢n) = O(hp) (25.1)

as h! 0, and this will generalize the notion of the order of accuracy for deterministic ODEs.
We may call the exponent p in (25.1) the weak order of accuracy .

25.1 Suzuki-Trotter expansion of the Fokker-Planck equation

One systematic approach to getting higher orders of accuracy is based on the Suzuk-Trotter
expansion of a matrix exponential. Again we will focus only on the case � ⌘ �I.

Abstractly, the solution of the Fokker-Planck equation (24.2) is given by the expression

⇢t = etA
⇤
⇢0

involving an operator exponential.
We can split

A⇤ = A⇤
di↵ +A⇤

drift

into two terms, corresponding to the drift and diffusion components of the SDE (20.8).
Evidently we have

A⇤
driftg(x) = �r · (b(x)g(x)), A⇤

di↵g(x) =
�2

2
�g(x)

for arbitrary g.
The first-order Suzuki-Trotter expansion (ST1) rewrites a general operator exponential

of a sum as
eh(A+B) = ehAehB +O(h2), (25.2)

where the O(h) has to be interpreted carefully in the operator setting. (We will ignore such
detailed considerations). Correspondingly one can write

etn(A+B) =
nY

k=1

ehAehB +O(h).

In general, higher-order Suzuki-Trotter expansions can be constructed involving products
of factors only of the form e⌧A and e⌧B for carefully chosen scalar values of ⌧ . We will only
mention the next highest order, ST2, which is the most commonly used:

eh(A+B) = e(h/2)AehBe(h/2)A +O(h3), (25.3)

yielding the approximation

etn(A+B) =
nY

k=1

e(h/2)AehBe(h/2)A +O(h2).

We will take A = A⇤
di↵ and B = A⇤

drift in the following, and the key point is that
e⌧A

⇤
diff and e⌧A

⇤
drift are easy to simulate directly because they correspond, respectively, to

Fokker-Planck evolution according to the dynamics

dX(t) = � dB(t),

107

which is simply a (scaled) Brownian motion, and

dX(t) = b(X(t)) dt,

which is a deterministic evolution according to the ODE x0(t) = b(x(t)).
Therefore, given X ⇠ ⇢ for some ⇢, we can draw Y ⇠ e⌧A

⇤
diff⇢ by simply setting Y =

X + �
p
⌧ Z, where Z ⇠ N (0, Id) independent of X. Likewise, given X ⇠ ⇢, we can draw

Y ⇠ e⌧A
⇤
drift⇢ by simply setting Y = '⌧ (X), where '⌧ is the deterministic flow map for the

ODE x0(t) = b(x(t)). For probabilists, this means precisely that e⌧A
⇤
drift⇢ = '⌧#⇢, where

‘#’ indicates the pushforward of probability measures/densities.
In general the flow map '⌧ cannot be evaluted directly but it can be replaced with

the flow-map of a one-step integrator (such as a Runge-Kutta method or even a Taylor
series method), '⌧ ⇡ R⌧ and the discrepancy of this replacement is essentially the LTE of
the integrator. If the LTE is O(hp+1), then for suitably regular drift term, it follows that
W1('⌧⇢,R⌧⇢) = O(hp+1).

25.2 Euler-Maruyama revisited

By taking the ST1 expansion (25.2) and using explicit Euler as our one-step integrator, we
obtain precisely the Euler-Maruyama scheme (21.1),

Xn+1 = Xn + b(Xn)h+ �
p
hZn+1,

where the Z1, Z2, . . . ⇠ N (0, Id) are i.i.d.
From this point of view, the Euler-Maruyama method is then seen to have a weak order

of accuracy of 1.

25.3 A higher-order example

To get a higher weak order of accuracy, we need one higher order of accuracy in the Suzuki-
Trotter expansion and one higher order of accuracy of the one-step integrator. We can
choose, for example, ST2 to obtain the following method:

Xn+1 = Rh

h
Xn + �

p
h/2Zn+1

i
+ �

p
h/2Wn+1,

where Rh is the iteration map of a second-order RK method such as improved Euler, and
the Z1,W1, Z2,W2, . . . ⇠ N (0, Id) are i.i.d.

The paper [Leimkuhler and Matthews (2013)] uses similar ideas in the special setting of
underdamped Langevin dynamics to derive widely used schemes such as BAOAB.

Of course, one might ask for various desiderata besides a higher weak order of accuracy
(e.g., absolute stability and geometric structure preservation), and we are only scratching
the surface here!

26 Markov chain Monte Carlo sampling

Suppose that you know how to evaluate a probability density p(x) pointwise, up to sum
unknown normalization constant. Equivalently, suppose you can evaluate U(x) and want to
sample from the probability density proportional to e�U , i.e.,

p(x) =
e�U(x)

Z
, Z =

Z
e�U(x) dx.

108

If p is a density on Rd and d � 1 roughly, it is difficult to draw samples from p due
to the curse of dimensonality, which prevents us from dealing with p directly by accurate
numerical quadrature.

The most generic and widely used approaches to sampling from such a known density fall
under the umbrella of Markov chain Monte Carlo (MCMC) methods. In MCMC, the
goal is to design a Markov chain whose stationary distribution is exactly or approximately
equal to p. Then we can get a sample from p by running the Markov chain for a sufficiently
long time.

There are two major points of view on MCMC sampling: that of the Metropolis-Hastings
algorithm and that of the integration of (stochastic) ordinary differential equations. As we
shall see, they can also be fruitfully combined.

26.1 Metropolization

A Markov chain can be specified by a transition probability kernel q(y|x), which specifies
a procedure for producing a stochastic process Xn, n = 0, 1, 2, . . . , given some initializaion
X0 ⇠ p0. Here, for any x, q(· |x) is a probability density, and given that Xn = x, the
procedure is defined by drawing Xn+1 ⇠ q(· |x). Generically, a Markov chain tends to have
a unique stationary distribution p. The stationary distribution evidently must satisfy

p(y) =

Z
q(y|x)p(x) dx (26.1)

for all y.
One sufficient (but not necessary) condition for (26.1) is called detailed balance , which

is a ‘pointwise’ property that is easier to guarantee:

q(y|x)p(x) = q(x|y)p(y). (26.2)

One can observe that (26.2) implies (26.1) simply by integrating with respect to x and
observing that

R
q(x|y) dx = 1 for all y.

The remarkable idea of the Metropolis-Hastings algorithm is that for any target
p(x), any Markov chain g(y|x) can be corrected in a simple way to produce a Markov chain
q(y|x) satisfying detailed balance (26.2) with respect to p. In particular, we get a Markov
chain whose stationary distribution is the target p(x). The Metropolis-Hastings algorithm
can then be used to draw samples from p(x) by running this Markov chain.

Given Xn = x, the modification works by first proposing an update y ⇠ g(· |x) and
then accepting this update with an acceptance probability that can be easily computed. If
we accept the update, this means that we set Xn+1 = y. If we reject the update, this means
that we set Xn+1 = x.

The acceptance probability is simply

A(y, x) := min

✓
1,

p(y)

p(x)

g(x|y)
g(y|x)

◆
. (26.3)

As long as we can evaluate g and p (up to normalization), it is possible to compute A(y, x).
The transition kernel q of the modified Markov chain can be written

q(y|x) = A(y, x)g(y|x) + (1�A(y, x))�(x� y),

where � denotes the Dirac delta function. It can be verified that q satisfies detailed balance
with respect to p, regardless of the choice of g. Indeed,

109

q(y|x)p(x)� q(x|y)p(y) = A(y, x)g(y|x)p(x)�A(x, y)g(x|y)p(y),

and therefore it susffices to show that

A(y, x)

A(x, y)
=

g(x|y)p(y)
g(y|x)p(x) ,

which can be checked directly.

26.2 Overdamped Langevin as MCMC and MALA

As we have seen in Section 24.1, the continuous time (Markov) process defined by

dX(t) = �rU(X(t)) dt+
p
2 dB(t) (26.4)

has p(x) / e�U(x) as its invariant distribution.
Therefore we can attempt to sample from p by integrating the SDE (26.4) approxmately

(via, for example, the Euler-Maruyama scheme) to produce a Markov chain {Xn}1n=0 with
invariant distribution ⇢ ⇡ p.

If we use a small step size h to integrate (26.4), then the discrepancy between ⇢ and
the target p will be small, yielding a small bias in sample expectations. But note that
we always have the option of viewing the Markov chain furnished by Euler-Maruyama as
a proposal in the sense of Metropolis-Hastings and then correcting it according to the
acceptance probability (26.3), which can in this case be explicitly computed. This approach
is called the Metropolis-adjusted Langevin algorithm (MALA). (Whether or not one
actually wants to Metropolize is a subtle matter!)

26.3 Hamiltonian Monte Carlo

To draw a sample X ⇠ p(x) / e�U(x), we could jointly sample

(W,X) ⇠ P (w, x) / e�
1
2 |w|2�U(x),

where w, x 2 Rd and then simply forget about the W component. (One could choose, more
generally, a quadratic form 1

2w
>M�1w within the exponent, but the rationale for doing this

brings us beyond the scope of the course.)
Here we identify (w, x) with the joint momentum-position variable (p, q) appearing in

the discussion of Hamiltonian systems of Section 20, but we ditch this notation now to
avoid clashing with the notation for probability densities. Let us still identify y = (w, x)
and define the Hamiltonian

H(y) = H(w, x) = �1

2
|w|2 � U(x).

Observe that we can always draw a perfect sample W from the appropriate marginal
of P simply as W ⇠ N (0, Id). Meanwhile, the flow map 't of the Hamiltonian dynamics
according to H is volume-preserving, satisfies time reversal symmetry (cf. homework), and
conserves energy. It follows that

Theorem 70. Given Yn = (Wn, Xn), independently draw W̃n ⇠ N (0, Id) and let Yn+1 =
't(W̃n, Xn), where t 2 R. The Markov chain Y0, Y1, . . . so defined has P as its invariant
distribution.

110

In practice, we cannot apply the flow map 't exactly. Instead we must apply an ap-
proximate numerical flow map Ft. A numerical flow map cannot be counted on to conserve
energy! But it can be counted on to be volume-preserving (if symplectic) and satisfy time
reversal symmetry. Usually one takes

Ft = Rh � · · · �Rh| {z }
n times

, (26.5)

where t = nh and Rh is the (one-step) iteration map of Runge-Kutta method. Typically,
the Störmer-Verlet (or ‘leapfrog’) integrator is used since this choice guarantees that Ft is
symplectic and time-reversal-symmetric.

If we replace the flow map in the statement of Theorem 70 with a numerical flow map
Ft (26.5), then the invariant measure of the resulting Markov chain should approximate P
for a small choice of h. However, if in fact Ft is symplectic and time-reversal-symmetric,
then the Metropolis-Hastings acceptance probability can be computed as

A(y0, y) = e�(H(y0)�H(y)), (26.6)

where y0 is the proposed state according to the Markov chain of Theorem 70 and y =
(W̃n, Xn) as in the statement of the same theorem.

Theorem 71. Given Yn = (Wn, Xn), independently draw W̃n ⇠ N (0, Id), let Ỹ = (W̃n, Xn),
and let Y 0 = Ft(Ỹ), where t = nh and Ft is defined as in (26.5) in terms of a symplectic in-
tegrator Rh that satisfies time reversal symmetry. With probability A(Y 0, Ỹ), let Yn+1 = Y 0,
otherwise let Yn+1 = Ỹ , where A is defined as in (26.6). The Markov chain Y0, Y1, . . . so
defined has P as its invariant distribution.

The method of Theorem 71 is called Hamiltonian Monte Carlo or hybrid Monte
Carlo (either way, HMC). In practice we want to choose t = nh large enough so that the
Markov chain mixes rapidly but not so large that the acceptance probability doesn’t vanish.
Many further details can be explored, in particular regarding the proper balance of n and
h, but this is the basic picture.

111

Appendices
Appendix A Lagrange interpolation

Let t0 < . . . < tm 2 R (not necessarily evenly spaced), and let x0, . . . , xm 2 Rd. We
will discuss general vector-valued interpolation (d � 1), but this is completely equivalent to
scalar-valued interpolation performed componentwise. Our goal is to find a polynomial P (t)
such that P (ti) = xi for i = 0, . . . ,m. We need to consider a polynomial of order at least m
in order to do so in general, and in fact there exists a unique such interpolating polynomial
of order m, sometimes called the Lagrange (interpolating) polynomial .

Usually we have in mind a scenario in which there exists a ‘ground truth’ function g for
which g(ti) = xi for all i, and we hope that the polynomial ` interpolating the data (ti, xi),
i = 0, . . . ,m, is a good approximation for g.

In general, Lagrange interpolation is an extremely dangerous thing to do in the sense
that the ground truth g and the interpolation P can differ dramatically even as the size m
of the dataset is increased, due to Runge’s phenomenon.5

However, if g is sufficiently smooth, the number of interpolation points m is fixed, and
the range [t0, tm] shrinks, then in fact ` approximates g with pointwise O(|tm � t0|m+1)
error, regardless of the choice of interpolation points ti. First we discuss how to construct
P , and then we present the proof of this error bound.

A.1 Construction and uniqueness

Consider the Lagrange basis polynomials subordinate to the choice of interpolation
points t = (t0, . . . , tm)

`j(t; t) :=
Y

i2{0,...,m}\{j}

t� ti
tj � ti

, j = 0, . . . ,m. (A.1)

We will omit the dependence on t henceforth since the interpolation points will be fixed.
Note that `j is a polynomial of order m, and moreover observe that

`j(ti) = �ij , (A.2)

where �ij is the Kronecker delta.
Therefore if we simply define the Lagrange interpolating polynomial ` : R! Rd via

` =
mX

j=0

`jxj ,

then by construction `(ti) =
P

m

j=0 xj�ij = xi, achieving the desired interpolating property.
Note that the delta property (A.2) implies that the `j are linearly independent as

functions, hence form a basis for the space of polynomials of order m. (Indeed, supposeP
m

j=0 cj`j ⌘ 0 is the zero polynomial. Then in particular, plugging in ti to both sides, we
have ci = 0 for all i = 0, . . . ,m. This guarantees linear independence.)

In fact, the basis property implies that ` is the unique order-m polynomial interpolant,
i.e., the unique polynomial P of order m achieving P (ti) = xi for all i = 0, . . . ,m. Indeed,

5Such pathologies can be avoided if the ti are chosen to be the Chebyshev nodes for the interval [t0, tm],
but in general, e.g., for equispaced grids, beware.

112

any such P can be written as P =
P

m

j=0 `jyj for some yj 2 Rd by the basis property of the
`j (applied componentwise). Then plugging ti into both sides we see that P (ti) = yi, but
P (ti) = xi by the interpolating property, so in fact P =

P
m

j=0 `jxj = `. This establishes
uniqueness as claimed.

Theorem 72. Given distinct interpolation points t0, . . . , tm 2 R, the Lagrange basis poly-
nomials `j(· ; t) defined as in (A.1) form a basis for the space of polynomials of order m.
Moreover, given x0, . . . , xm 2 Rd, the Lagrange interpolating polynomial

`(t) :=
mX

j=0

`j(t; t)xj

is the unique polynomial of order m achieving `(ti) = xi for i = 0, . . . ,m.

A.2 Error bound

Next we establish the approximation property that is of use to us.

Theorem 73. Suppose g 2 Cm+1([a, b]), and let t0, . . . , tm 2 [a, b] be distinct interpolation
points. Let xi = g(ti) for i = 0, . . . ,m, and let ` denote the Lagrange interpolating polyno-
mial for the data (ti, xi), i = 0, . . . ,m, as in the statement of Theorem 72. Then for every
t 2 [a, b] there exists ⇠ = ⇠(t) 2 [a, b] such that

g(t)� `(t) = g(m+1)(⇠)

(m+ 1)!

mY

i=0

(t� ti).

Proof. Define the remainder
R := g � `.

We know that R has zeros at t0, . . . , tm, and we want to ‘compare’ it with the degree-(m+1)
polynomial P with the same zeros, namely

P (t) :=
mY

i=0

(t� ti).

Now R and P both have zeros at the ti, hence any linear combination of them does as well.
But for any fixed t 2 [a, b]\{t0, . . . , tm}, we can find a linear combination of R and P that
has an additional zero at t, namely the function

ht(s) := R(s)� R(t)

P (t)
P (s).

Then hs has (at least) m+2 zeros on [a, b], hence by Rolle’s theorem, h0
s

has m+1 zeros
on this interval, and by repeated application of Rolle’s theorem, we see that h(m+1)

s has a
zero on [a, b], which we call ⇠ = ⇠(t). Then by construction

0 = h(m+1)
t

(⇠) = g(m+1)
t

(⇠)� R(t)

P (t)
(m+ 1)!,

where the last equality follows from the fact that P (m+1) ⌘ (m + 1)!, since P is a monic
polynomial of degree m + 1, and `(m+1) ⌘ 0, since ` is a polynomial of degree m. Solving
for the remainder we have

R(t) =
g(m+1)(⇠)

(m+ 1)!
P (t),

as was to be shown. (Note that the theorem holds trivially for t 2 {t0, . . . , tm}.)

113

The preceding theorem immediately implies the desired O(|tm � t0|m+1) approximation
property of the Lagrange interpolating polynomial. We turn to proving a sharp formulation
of this bound.

Corollary 74. Suppose g 2 Cm+1([a, b]), and let a = t0 < · · · < tm = b be distinct inter-
polation points. Let xi = g(ti) for i = 0, . . . ,m, and let ` denote the Lagrange interpolating
polynomial for the data (ti, xi), i = 0, . . . ,m, as in the statement of Theorem 72. Further
define

� := max
i=0,...,m�1

|ti+1 � ti|

to be the maximal distance between adjacent interpolation points, and let ||| · ||| denote the
uniform norm |||h||| := sup

t2[a,b] |h(t)| on [a, b]. Then

|||g � `||| |||g(m+1)|||
4(m+ 1)

�m+1.

Proof. Let t 2 [a, b]. By the preceding theorem, we know that there exists ⇠ 2 [a, b] such
that

g(t)� `(t) = g(m+1)(⇠)

(m+ 1)!

mY

i=0

(t� ti).

Then we only need to show that
mY

i=0

|t� ti|
m!

4
�m+1.

Note that for any t /2 [a, b]\{t0, . . . , tm}, there exists j such that t 2 [tj , tj+1]. These values
tj , tj+1 are the closest of the ti to the given t. The next closest value must be within a
distance of 2�, then the next next closest within a distance of 3�, etc., with the furthest
being within a distance of m�. Moreover, the product of (t � tj)(tj+1 � tj) is maximized
at the midpoint (tj + tj+1)/2, hence bounded by �2/4. Therefore the product of all the
distances is bounded as

mY

i=0

|t� ti| (�2/4)(2�)(3�) · · · (m�) =
m!

4
�m+1,

as was to be shown.

Appendix B Chebyshev polynomials

The Chebyshev polynomials6 constitute an extremely useful gadget in numerical analysis,
due to their equioscillation property on the interval [�1, 1], which can be transferred to
arbitrary intervals via apprropriate shifting and scaling.

The n-th Chebyshev polynomial is defined for t 2 [�1, 1] by

Tn(t) = cos(n cos�1(t)).

It is not immediately obvious from the definition that Tn is actually a polynomial! However,
this fact is guaranteed by the three-term recurrence

Tn+1(t) = 2tTn(t)� Tn�1(t), (B.1)
6 To us, the terminology ‘Chebyshev polynomials’ will always indicate ‘Chebyshev polynomials of the

first kind’ unless otherwise specified.

114

together with the obvious identities T0 ⌘ 1 and T1(t) = t.
To see (B.1), we use the classic trigonometric identity

cos(a+ b) = cos(a) cos(b)� sin(a) sin(b).

Substituting �b in for b and adding identities yields another identity

cos(a+ b) + cos(a� b) = 2 cos(a) cos(b),

or
cos(a+ b) = 2 cos(a) cos(b)� cos(a� b).

We can then compute

Tn+1(t) = cos(n cos�1(t) + cos�1(t))

= 2 cos(n cos�1(t)) cos(cos�1(t))� cos((n� 1) cos�1(t))

= 2tTn(t)� Tn�1(t),

verifying (B.1).
Note that the zeros of Tn (called the Chebyshev nodes) are therefore

cos

✓
2j � 1

2n
⇡

◆
, j = 1, . . . , n,

and moreover
|Tn(t)| 1, t 2 [�1, 1].

Moreover, the local extrema of Tn, attained at

cos

✓
j⇡

n

◆
, j = 1, . . . , n� 1

are all ±1 (as are the values at the interval endpoints �1 and 1). This is the equioscillation
property.

Then we have the following corollary of Theorem 72, which clarifies the advantage of
using Chebyshev nodes (as opposed to equispaced points) as the interpolation points in
Lagrange interpolation.

Theorem 75. Suppose g 2 Cm+1([�1, 1]). Let t0, . . . , tm be the zeros of the Chebyshev
polynomial of degree m+ 1, i.e.,

ti = cos

✓
2i+ 1

2m+ 2
⇡

◆
, i = 0, . . . ,m.

Let xi = g(ti). Then the Lagrange interpolating polynomial ` as in Theorem 72 satisfies

|||g � `||| 2�m
|||g(m+1)|||
(m+ 1)!

,

where ||| · ||| denotes he uniform norm on the interval [�1, 1].

Proof. Note that the polynomial P (t) =
Q

m

i=0(t � ti) must coincide with a scalar multiple
of Tm+1 by the fundamental theorem of algebra. The three-term recurrence (B.1) implies
that the degree-n part of Tn is 2n�1tn for all n � 1. Therefore

mY

i=0

(t� ti) =
1

2m
Tm+1(t).

But |Tm+1| 1 on [�1, 1], so the result follows from Theorem 73.

115

The next corollary follows simply by shifting and scaling the interval of interpolation.

Theorem 76. Suppose g 2 Cm+1(I), where I := [c� r, c+ r] with c 2 R and r > 0. Define
interpolation points

ti = c+ r cos

✓
2i+ 1

2m+ 2
⇡

◆
, i = 0, . . . ,m,

and let xi = g(ti). Then the Lagrange interpolating polynomial ` as in Theorem 72 satisfies

|||g � `||| rm+1

2m
|||g(m+1)|||
(m+ 1)!

,

where ||| · ||| denotes he uniform norm on the interval I.

Appendix C Orthogonal polynomials and Gauss quadra-
ture

Given an interval [a, b], possibly with a = �1, b = +1 and a weight function w : [a, b] !
[0,1), Gauss quadrature concerns the estimation of integrals of the form

Z
b

a

g(t)w(t) dt

with quadrature rules of the form
mX

i=1

big(ti).

We will ask for an integration rule that is exact when g is a polynomial, up to whatever
order we can achieve. Note that if the interval is infinite or semi-infinite, we must demand
that the weight function w(t) has sufficient decay. For example, the choice w(t) = e�t

2
/2

for the interval (�1,1) will induce the so-called Gauss-Hermite quadrature.
In this course, Gauss quadrature is relevant via the study of collocation methods (cf.

Section 17), where the Gauss-Legendre quadrature induced by the choice w ⌘ 1 on the
interval [�1, 1] will be relevant, after suitable post-processing by shifting and scaling of the
interval.

C.1 Orthogonal polynomials

Gauss quadrature is intimately linked to the theory of orthogonal polynomials. For a
given interval and weight function, orthogonal polynomials are defined to be a sequence of
polynomials pk of ascending degree k = 0, 1, 2, . . . (usually fixed uniquely by the constraint
that they are monic) that are orthogonal with respect to the weighted inner product

hg, hi =
Z

b

a

g(t)h(t)w(t) dt.

In our discussion we will fix our orthogonal polynomial sequence to be the unique monic
orthogonal polynomial sequence.

In principle pk = pk(t) can be constructed by applying the Gram-Schmidt procedure to
the monomial sequence of polynomials 1, t, t2, t3, . . ., i.e., recursively constructing them via

pk(z) = tk �
k�1X

l=0

⌦
tk, pl

↵

hpl, pli
pl(t).

116

By construction it should be clear that the pk are monic orthogonal polynomials. Moreover
note that as monic polynomials of ascending order, p0, . . . , pk form a basis for the set Pk

polynomials of degree k, for any k.

C.2 Three-term recurrence

One important feature of orthogonal polynomial sequences, which we don’t really need, is
the three-term recurrence, which always permits stable evaluation of orthogonal polynomi-
als. The derivation of the three-term-term recurrence comes from noticing that tpk(t) is
a polynomial of order k + 1, hence can be expanded in the orthogonal basis p0, . . . , pk+1.
Hence we can write

tpk(t) =
k+1X

l=0

htpk, pli
hpl, pli

pl(t).

However, interestingly, many of these terms vanish, as we can compute:

htpk, pli =
Z

b

a

pk(t) [tpl(t)]| {z }
3Pl+1

w(t) dt.

When l < k � 1, pk is orthogonal to a basis for Pl+1, hence orthogonal to all of Pl+1, and
these terms go away, yielding

htpk, pk+1i
hpk+1, pk+1i

pk+1(t) =

✓
t� htpk, pkihpk, pki

◆
pk(t)�

htpk, pk�1i
hpk�1, pk�1i

pk�1(t),

after suitable rearrangement of terms. Note that tpk�pk+1 2 Pk, hence using orthogonality

htpk, pk+1i = hpk+1, pk+1i+ htpk � pk+1, pk+1i = hpk+1, pk+1i ,

and similarly htpk, pk�1i = htpk�1, pki = hpk, pki, and in turn we have

pk+1(t) =

✓
t� htpk, pkihpk, pki

◆
pk(t)�

hpk, pki
hpk�1, pk�1i

pk�1(t),

or
pk+1(t) = (t� ↵k)pk(t)� �kpk�1(t),

where
↵k :=

htpk, pki
hpk, pki

, �k :=
hpk, pki

hpk�1, pk�1i
> 0.

This is the classic three-term recurrence, and in fact any three-term recurrence specified
by a sequence of ↵k 2 R and �k � 0 corresponds to a weight function, and in some sense
measures on R are equivalent to such sequences. (This is the content of Favard’s theorem.)
In Section 17, we see the utility of the three-term recurrence in the context of Chebyshev
polynomials.

C.3 Zeros of orthogonal polynomials

In the last subsection, we essentially proved a useful lemma, which we’ll state here now
formally:

Lemma 77. For any l < k, pk is orthogonal to every polynomial in Pl.

117

In fact the zeros of orthogonal polynomials will be the Gauss quadrature nodes. The
following lemma characterizes some of their key properties:

Lemma 78. All m zeros of pm are simple, hence distinct, and lie in (a, b).

Proof. We only need to consider m � 1. In this case

hpm, 1i =
Z

b

a

pm(t)w(t) dt = 0,

so we know that pm changes sign at least once in (a, b).
Let ⌧1, . . . , ⌧k denote the distinct points in (a, b) where pm changes sign. Suppose for

contradiction that k < m, and define

q(t) :=
kY

j=1

(t� ⌧j) 2 Pk.

Since pm and q both change sign at ⌧j , it follows that pmq never changes sign on (a, b), from
which it follows that

hpm, qi =
Z

b

a

pm(t)q(t)w(t) dt 6= 0.

But pm ? Pk so this is a contradiction.
We conclude that pm has at least m zeros in (a, b). Since pm has degree m, by root

counting, they must all be simple, and pm cannot admit any zeros outside of (a, b).

C.4 Gauss quadrature

In Section 17.3, given nodes c1, . . . , cs we explain how to choose weights b1, . . . , bs such that
the quadrature rule Z 1

0
⇠(u) du ⇡

sX

i=1

bi⇠(ci)

is exact for polynomials ⇠ 2 Ps�1. The weights were derived by exactly integrating the
Lagrange interpolant of the data (ci, ⇠(ci)), i = 1, . . . , s, yielding the exact formula

bi :=

Z 1

0
`i(u; c) du

for i = 1, . . . ,m.
Given t = (t1, . . . , tm), the exact same procedure yields more generally a quadrature rule

Z
b

a

g(t)w(t) dt ⇡
mX

i=1

big(ti)

that is exact for polynomials g 2 Pm�1, with weights defined by

bi :=

Z
b

a

`i(t; t)w(t) dt

for i = 1, . . . ,m. (Note: Here we follow a one-indexing rather than zero-indexing convention
for the interpolation points, by contrast with the convention of Appendix A used in the
discussion of interpolation in the context of LMMs.)

The remarkable thing is that if t1, . . . , tm 2 (a, b) are the zeros of the m-th orthogonal
polynomial pm with respect to the weight function w on the interval [a, b], then in fact this
quadrature rule is exact for all polynomials g 2 P2m�1.

118

Theorem 79. Let a < t1 < . . . < tm < b be the zeros of pm, the m-th orthogonal polynomial
with respect to the weight function w on the interval [a, b], and let t = (t1, . . . , tm). Define
weights

bi :=

Z
b

a

`i(t; t)w(t) dt

for i = 1, . . . ,m. Then Z
b

a

g(t)w(t) dt =
mX

i=1

big(ti)

for all g 2 P2m�1.

Proof. Let g 2 P2m�1. Since the degree of pm is m, by polynomial long division we can
write

g = pmq + r,

where q 2 Pm�1, and deg(r) < deg(q), hence also r 2 Pm�1. Then

mX

i=1

big(ti) =
mX

i=1

bipm(ti)q(ti) +
mX

i=1

bir(ti).

But pm(ti) = 0 for all i = 1, . . . ,m, so in fact

mX

i=1

big(ti) =
mX

i=1

bir(ti).

But since r is a polynomial of degree at most m� 1, the quadrature rule defined by weights
bi and quadrature points ti is exact, and in fact we have shown

mX

i=1

big(ti) =

Z
b

a

r(t)w(t) dt. (C.1)

Meanwhile, we can compute
Z

b

a

g(t)w(t) dt =

Z
b

a

pm(t)q(t)w(t) dt+

Z
b

a

r(t)w(t) dt

= hpm, qi+
mX

i=1

big(ti)

=
mX

i=1

big(ti),

where we have used (C.1) and the fact that pm ? Pm�1.

119

	I Introduction
	Systems of ODEs
	Reduction to autonomous case
	Reduction to first-order case

	Existence and uniqueness: Picard iteration
	Banach fixed point theorem
	Picard-Lindelöf theorem

	Discretization
	Euler's method
	Explicit Euler
	Error estimation and Richardson extrapolation
	Implicit Euler

	Taylor series methods

	II Linear multistep methods
	Local truncation error and consistency
	One-step methods
	Explicit Euler
	Implicit Euler
	Trapezoidal rule

	Consistency
	Starting values

	Families of LMMs
	Integral-based methods
	Adams-Bashforth methods
	Adams-Moulton methods
	Nyström methods
	Milne-Simpson methods

	Backward differentiation formulas

	Solving implicit methods
	Fixed-point / Picard iteration
	Globally Lipschitz case
	General case

	Newton's method
	Anderson acceleration / DIIS

	Zero-stability
	Difference equations
	Root condition
	Examples
	Silly example
	Adams-type methods
	Nyström-type methods
	Backward differentiation formulas

	Dahlquist's first barrier theorem

	Convergence theorem
	The step map
	Warm-up: inhomogeneous linear difference equation
	Getting warmer: linear case
	Lipschitz case

	Milne's device and predictor-corrector methods
	Milne's device
	Predictor-corrector methods

	Stiff systems and absolute stability
	Linear systems of ODEs
	Absolute stability
	Computing arbitrary absolute stability regions
	A-stability
	A0-stability
	Absolute stability and linear systems of ODEs
	Stiff systems

	III Runge-Kutta methods
	The general RK method
	The Runge-Kutta iteration map
	Sum rule
	Explicit RK methods
	Local truncation error, consistency, and convergence
	Simple example: modified Euler

	Designing higher-order explicit schemes
	One-stage methods
	Two-stage methods
	Three-stage methods
	Beyond third order
	Attainable order?

	Absolute stability
	The stability function
	Deriving the stability polynomial
	Digression on the order of accuracy
	Absolute stability regions
	Implicit stability functions

	Runge-Kutta-Chebyshev methods
	Collocation methods
	Basic motivation
	Defining equations for the slopes
	Defining the weights, given the nodes
	Digression on solving implicit methods
	Summary up to determining the nodes
	Proof of order of accuracy: autonomous linear case
	Proof of order of accuracy: non-autonomous linear case
	Sketch in general case

	Gauss-Legendre methods

	IV Geometric numerical integration
	Monotone systems
	Algebraic stability
	Alegbraic stability of Gauss-Legendre methods

	Quadratic invariants
	The M matrix returns!
	Unitary flows

	Hamiltonian systems
	Separable Hamiltonians
	Energy conservation
	Symplectic structure
	Partitioned Runge-Kutta methods for separable Hamiltonian systems
	General partitioned RK methods
	Consistency conditions
	Symplecticity
	Separable Hamiltonian case
	Symplectic Euler
	Störmer-Verlet

	V Stochastic differential equations and Monte Carlo sampling
	Understanding the SDE
	What is the goal?
	Infinitesimal generator
	Fokker-Planck equation
	Overdamped Langevin dynamics

	How to construct higher-order schemes
	Suzuki-Trotter expansion of the Fokker-Planck equation
	Euler-Maruyama revisited
	A higher-order example

	Markov chain Monte Carlo sampling
	Metropolization
	Overdamped Langevin as MCMC and MALA
	Hamiltonian Monte Carlo

	Appendices
	Lagrange interpolation
	Construction and uniqueness
	Error bound

	Chebyshev polynomials
	Orthogonal polynomials and Gauss quadrature
	Orthogonal polynomials
	Three-term recurrence
	Zeros of orthogonal polynomials
	Gauss quadrature

