
Asymptotics of Hermite polynomials

Michael Lindsey

We motivate the study of the asymptotics of Hermite polynomials via their appearance in the
analysis of the Gaussian Unitary Ensemble (GUE). Following Tao [3], we prove various facts about
the Hermite polynomials and analyze their asymptotics via analysis of the semiclassical harmonic
oscillator operator, which arises from the Hermite differential equation. Still following Tao [3], we
use these asymptotics to prove a semicircular law for the expected empirical spectral distribution of
the GUE. Since this project is a pedagogical exercise, we provide significantly more detail than Tao
[3], filling in several computations and exercises left to the reader, and even correcting a few errors.

Lastly, we make use of our results on the asymptotics of Hermite polynomials to show that, in a
certain sense, the normalized stationary states for the quantum harmonic oscillator converge to the
classical position distribution for the harmonic oscillator. This convergence is suggested graphically
in Griffiths [2]. Our proof is very likely nothing new, though it has been thought out independently
by the author.

Before beginning, we note that our discussion of random matrix theory (focusing on the GUE)
is less detailed than the material that follows (i.e., the discussion of Hermite polynomials, their
asymptotics, and the proofs of the semicircular law and the fact about harmonic oscillator), and
we refer to other texts for proofs in certain places. (Since this project is for a class on orthogonal
polynomials, we decided that it would be more appropriate to provide full detail in the latter parts
and to include the discussion of random matrix theory mainly as motivation.)
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7 Connection with the quantum harmonic oscillator 16

1 The GUE and related ensembles
The n-dimensional GUE is an ensemble of n ⇥ n Hermitian matrices. A sample M is obtained
by sampling the upper triangular entries from the NC(0, 1) distribution and sampling the diagonal
entries from NR(0, 1), all mutually independently, and fixing the lower-triangular entries by the con-
straint that M is Hermitian. We write M = (M

ij

).

Consider the measure dM =

Q
n

i=1 dMii

Q
j<k

dM<
jk

dM=
jk

on the space M of Hermitian matrices
(simply the Lebesgue measure on M considered in the most obvious way as Rn

2

). It is clear by
construction that the probability measure corresponding to the GUE is given by

µ
n

= C
n

 
nY

i=1

e�|Mii|2/2dM
ii

!0

@
Y

1j<kn

e�|Mij |2dM<
jk

dM=
jk

1

A

= C
n

 
nY

i=1

e�|Mii|2/2

!0

@
Y

1j<kn

e�|Mij |2

1

A dM

= C
n

e�tr
(

M

2
)

/2dM,

where C
n

is chosen so that µ
n

(M) = 1. It is clear that e�tr
(

M

2
)

/2 is invariant under the transfor-
mation M 7! UMU�1 for unitary matrices U . By computing the determinant of M 7! UMU�1

as a linear transformation Rn

2 ! Rn

2

(as in Deift [2]), it can be shown that dM is also unvariant
under this transformation, and therefore µ

n

is invariant under conjugation by unitary matrices.

More generally we can consider the distribution µF

n

= CF

n

e�F (M)dM , where F : M ! R is
invariant under unitary conjugation (so F depends symmetrically on all of the eigenvalues). Par-
ticularly noteworthy are the functions F = tr � P , where P is a polynomial of even degree with
positive coefficient for the highest-order term (ensuring integrability). Many of the properties of the
GUE hold for these ensembles as well. For P quadratic, it is easy to see that e�trP (M) splits into a
product of functions of M

ii

and M
jk

(with j < k) individually, so evidently the diagonal and upper
triangular entries of M are all mutually independent in this case (as in the GUE). As mentioned by
Deift [2], a suitable converse is true, and it follows that modulo shifting by a constant and rescaling,
the GUE is the unique Hermitian matrix ensemble that is invariant under unitary conjugation with
all non-lower-triangular entries mutually independent and therefore a very natural object to study.

2 The Ginibre formula
We consider M to be the random matrix variable associated with µF

n

(though we shall omit the F
from our notation) for F = tr � P as above. Consider the map � which maps M 7! (�1,�2, · · · ,�n)
where �1  �2  · · ·  �

n

are the ordered eigenvalues of M (all real since M is hermitian). Then
the following holds for the density ⇢

n

for � on the space Rn

 = {x1  x2  · · ·  x
n

}:
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Theorem. (Ginibre formula).

⇢
n

(�) = const · e�
Pn

i=1 P (�i)|�
n

(�)|2,

where

�

n

(�) =
Y

1i<jn

(�
j

� �
i

).

We give a brief sketch of the proof, following Deift [2]. First note that when the eigenvalues
of M are simple, the diagonalization M = U⇤U⇤ (with the entries of ⇤ ordered) is unique up to
right-multiplication of U by diagonal unitary matrices (which form the maximal torus Tn ⇢ U

n

).
This holds because a matrix can only commute with ⇤ if it is diagonal. Also, it is not hard
to see that generically M has simple eigenvalues (this can be shown for example by considering
the vanishing set of the discriminant, which does not have full dimension). Then there is a map
M

�7! (Rn

<

= {�1 < �2 < · · · < �
n

},U
n

mod (Tn

)) which is a bijection when restricted a subset of M
of full measure.

A calculation using local coordinates of U
n

mod (Tn

) shows that the Jacobian determinant of � is
equal to the product of �

n

(�) and a factor that depends only on ‘unitary variables’ associated with
the coordinates on U

n

mod (Tn

), and with some work the Ginibre formula follows from this fact.

3 Enter orthogonal polynomials
The GUE and related ensembles are linked to orthogonal polynomials via the expression �

n

(�)
that appears in the Ginibre formula. �

n

(�) is of course the Vandermonde determinant detV where
V = (�i�1

j

). For all j � 0, let ⇡
j

be a monic polynomial of degree j. Then by elementary row
operations, we have that �

n

(�) = det (V
⇡

) where V
⇡

= ⇡
i

(�
j

), so

|�
n

(�)|2 = det

�
V >
⇡

V
⇡

�
= det

 
n�1X

k=0

⇡
k

(�
i

)⇡
k

(�
j

)

!

1i,jn

.

Then in the case of the GUE,

⇢
n

(�) = const · e�
Pn

i=1 �

2
i /2

det

 
n�1X

k=0

⇡
k

(�
i

)⇡
k

(�
j

)

!

1i,jn

= const · det
 

n�1X

k=0

⇡
k

(�
i

)e��

2
i /4⇡

k

(�
j

)e��

2
j/4

!

1i,jn

= const · det (K
n

(�
i

,�
j

))1i,jn

,

where K
n

is defined by K
n

(x, y) =
P

n�1
k=0 ⇡k(�i)e

��

2
i /4⇡

k

(�
j

)e��

2
j/4.

We see that taking the ⇡
j

to be non-monic only changes the formula for ⇢
n

(�) by a constant fac-
tor, so let us take ⇡

j

to be the orthonormal Hermite polynomials. Then evidently by orthonormality
we have that

R
K

n

(x, x) dx = n (trace identity) and K
n

(x, y) =
R
K

n

(x, z)K
n

(z, y) dz (reproducing
formula). These two properties yield the following:
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Lemma. (Determinantal integration).

Z
det (K

n

(�
i

,�
j

))1i,jk+1 d�k+1 = (n� k)

Z
det (K

n

(�
i

,�
j

))1i,jk

.

In particular it follows that

Z
det (K

n

(�
i

,�
j

))1i,jn

d�1 · · · d�n = n!

Proof. See, for example, Tao [3].

The latter statement can be used to show that in fact

⇢
n

(�) = det (K
n

(�
i

,�
j

))1i,jn

in the GUE case. Furthermore, it can be shown that ⇢
k

(�1, . . . ,�k) := det(K
n

(�
i

,�
j

))1i,jk

is the
k-point correlation function for the spectrum, i.e.,
Z

Rk

⇢
k

(�1, . . . ,�k)F (�1, . . . ,�k) d�1 · · · d�
k

= E

2

4
X

1i1,...,ikn, distinct

F (�
i1(Mn

), . . . ,�
ik(Mn

))

3

5

for any measurable F : Rk ! C supported on {x1  · · ·  x
k

}. See Tao [3] for details.

It follows from the Christoffel-Darboux formula that

K
n

(x, y) =
⇡
n

(x)⇡
n�1(y)� ⇡

n�1(x)⇡n(y)

a
n�1(x� y)

e�(x2+y

2)/4,

where a
i

are defined by the three-term recurrence ⇡
i+1(x) = (a

i

x+ b
i

)P
i

(x)� c
i

P
i�1(x). Then also

we have that
K

n

(x, x) = (a
n�1)

�1
�
⇡0
n

(x)⇡
n�1(x)� ⇡0

n�1(x)⇡n(x)
�
e�x

2
/2.

Then it is clear that pinning down the asymptotics of the ⇡
n

(and the a
n

) will help us to grasp the
asymptotic behavior of the expected spectral measure of the GUE.

Many objects associated with the GUE can be expressed conveniently in terms of K
n

; see, for
example, Deift [2]. We will later focus on a particular object: the expected empirical spectral
measure of M

n

. The empirical spectral measure µ
Mn is defined by µ

Mn =

P
n

i=1 ��i(Mn). Recalling
our result on the k-point correlation function above with k = 1, we have that

Z

R
K

n

(x, x)F (x) dx = E
nX

i=1

F (�
i

(M
n

))

for measurable F : R ! C. Of course,
nX

i=1

F (�
i

(M
n

)) =

Z
F

nX

i=1

�
�i(Mn),

so it follows that Eµ
Mn = K

n

(x, x) dx. As we shall confirm later, the range of the eigenvalues
of M

n

scales as
p
n, so for studying asymptotic behavior it makes sense to consider the rescaled

probability measure n�1/2K
n

(

p
nx,

p
nx) dx, which is easily seen to be equal to Eµ

Mn/
p
n

. We
write E

n

= n�1/2K
n

(

p
nx,

p
nx), so Eµ

Mn/
p
n

= E
n

(x) dx. We will examine below the asymptotics
of E

n

and Eµ
Mn/

p
n

.
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4 Hermite polynomials
Henceforth we denote by P

i

the Hermite polynomials with positive leading coefficients which are
orthonormal with respect to the weight function w(x) = e�x

2
/2.

4.1 The Hermite recurrence relation
By the three-term recurrence, there exist a

i

, b
i

, c
i

(with a
i

6= 0, c0 = 0) such that

P
i+1(x) = (a

i

x+ b
i

)P
i

(x)� c
i

P
i�1(x).

We aim to compute the a
i

, b
i

, c
i

. By taking the inner product of both sides with P
i+1w and P

i�1w,
we obtain

a�1
i

=

Z
xP

i

(x)P
i+1(x)w(x) dx (4.1)

c
i

a�1
i

=

Z
xP

i

(x)P
i�1(x)w(x) dx. (4.2)

From (4.1) and (4.2) we see that c
i

= a
i

a�1
i�1 for all i � 1.

Meanwhile, taking the inner product of both sides of the recurrence relation with P
i

w yields

b
i

= �a
i

Z
xP

i

(x)2w(x) dx. (4.3)

(Thus far we have used only the orthonormality of the P
i

.)

Notice that xw(x) = �w0
(x). Thus we obtain by integrating by parts in (4.1):

a�1
i

=

Z ⇥
P 0
i

(x)P
i+1(x) + P

i

(x)P 0
i+1(x)

⇤
w(x) dx

=

Z
P
i

(x)P 0
i+1(x)w(x) dx,

where the second equality follows from the fact that P 0
i

has degree at most i � 1 (and hence is
orthogonal to P

i+1 with respect to w).

Let ↵
i

be the leading coefficient of P
i

. Then P 0
i+1 = (i+ 1)

↵i+1

↵i
P
i

+Q, where Q is a polynomial
of order at most i� 1. Then

a�1
i

=

Z
P
i

(x)


(i+ 1)

↵
i+1

↵
i

P
i

(x) +Q(x)

�
w(x) dx = (i+ 1)

↵
i+1

↵
i

.

It is also clear from the three-term recurrence relation that ↵
i+1 = a

i

↵
i

, so a�1
i

= (i+ 1)a
i

, i.e.,

a
i

=

1p
i+ 1

, ↵
i+1 =

↵
ip

i+ 1

.
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It is easy to see that P0(x) = (2⇡)�1/4, so

↵
i

=

1

2⇡1/4
p
i!
.

Also, since c
i

= a
i

a�1
i�1 for i � 1, we have that

c
i

=

p
ip

i+ 1

for i � 1.

Now integrating (4.3) by parts, we have

b
i

= �2a
i

Z
P
i

(x)P 0
i

(x)w(x) dx = 0,

where the second equality follows from the fact that P 0
i

has degree at most i� 1.

Then the Hermite recurrence relation is

P
i+1(x) =

1p
i+ 1

xP
i

(x)�
p
ip

i+ 1

P
i�1(x). (4.4)

4.2 Differential equations associated with Hermite polynomials
Next we obtain differential equations satisfied by the Hermite polynomials. To do so, we write P 0

i+1

as a linear combination of Hermite polynomials of order at most i, obtaining the coefficients of this
linear combination by taking inner products. Note that by integration by parts we have

Z
P
j

(x)P 0
i+1(x)w(x) dx =

Z
xP

j

(x)P
i+1(x)w(x) dx�

Z
P 0
j

(x)P
i+1(x)w(x) dx

=

Z ⇥
xP

j

(x)� P 0
j

(x)
⇤
P
i+1(x)w(x) dx.

When j < i, clearly the last integral is zero, and when j = i, we have that the contribution of the
P 0
j

term is zero, so
Z

P
i

(x)P 0
i+1(x)w(x) dx =

Z
xP

i

(x)P
i+1(x)w(x) dx = a�1

i

,

where the second equality follows from (4.1). Thus we can write

P 0
i+1 = a�1

i

P
i

=

p
i+ 1P

i

. (4.5)
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Then it follows that

(wP
i

)

0
(x) = w0

(x)P
i

(x) + w(x)P 0
i

(x) =
h
�xP

i

(x) +
p
iP

i�1

i
w(x).

By (4.4), the last expression is equal to �
p
i+ 1P

i+1(x)w(x), so we have that

(wP
i

)

0
= �

p
i+ 1wP

i+1,

or perhaps more familiarly,

d

dx

⇣
e�x

2
/2P

i

(x)
⌘
= �

p
i+ 1e�x

2
/2P

i+1(x).

Since P0 ⌘ (2⇡)�1/4, we have that

P
n

(x) =
(�1)

n

(2⇡)1/4
p
n!
ex

2
/2 dn

dxn

e�x

2
/2. (4.6)

This gives an explicit formula for the Hermite polynomials. However, we are interested in their
asymptotic behavior for large n, which is not obvious from this formula.

We need another approach to uncover this asymptotic behavior. Note that by (4.4) and (4.5),
we have for n � 2 that

nP
n

(x) = x
p
nP

n�1(x)�
p
n
p
n� 1P

n�2(x)

= xP 0
n

(x)� P 00
n

(x).

Then we have the Hermite differential equation:

P 00
n

(x)� xP 0
n

(x) + nP
n

(x) = 0.

We can in fact derive a differential equation satsified by the n-th Hermite function �
n

= P
n

w1/2.
We simply differentiate twice:

�00
n

= P 00
n

w1/2
+ 2P 0

n

⇣
w1/2

⌘0
+ P

n

⇣
w1/2

⌘00
.

Noting that
�
w1/2

�0
(x) = �x

2w(x)
1/2, so therefore

⇣
w1/2

⌘00
(x) =

✓
x2

4

� 1

2

◆
w(x)1/2,

we obtain

�00
n

(x) = P 00
n

(x)w(x)1/2 � xP 0
n

(x)w(x)1/2 +

✓
x2

4

� 1

2

◆
P
n

(x)w(x)1/2
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=


P 00
n

(x)� xP 0
n

(x) +

✓
x2

4

� 1

2

◆
P
n

(x)

�
w(x)1/2

=


�nP

n

(x) +

✓
x2

4

� 1

2

◆
P
n

(x)

�
w(x)1/2

=


�
✓
n+

1

2

◆
+

x2

4

�
�
n

(x),

i.e.,

�00
n

(x) = �
✓

n+

1

2

◆
� x2

4

�
�
n

(x). (4.7)

Note that, equivalently, we have that

L�
n

=

✓
n+

1

2

◆
�
n

,

where we denote by L the harmonic oscillator operator

L�(x) = ��00(x) + x2

4

�.

4.3 Rewriting Kn in terms of Hermite functions
Recall from above that (following from the Christoffel-Darboux formula)

K
n

(x, x) = a�1
n�1

�
P 0
n

(x)P
n�1(x)� P 0

n�1(x)Pn

(x)
�
w(x).

Since P
n�1 = a

n�1P
0
n

(see (4.5)), it follows that

K
n

(x, x) =
�
P 0
n

(x)2 � P 00
n

(x)P
n

(x)
�
w(x). (4.8)

Now
�0
n

(x) = P 0
n

(x)w(x)1/2 � x

2

P
n

(x)w(x)1/2,

so
�0
n

(x)2 = P 0
n

(x)2w(x)� xP
n

(x)P 0
n

(x)w(x) +
x2

4

P
n

(x)2w(x)

Then

�0
n

(x)2 +

✓
n� x2

4

◆
�
n

(x)2 = P 0
n

(x)2w(x)� xP
n

(x)P 0
n

(x)w(x) + nP
n

(x)2w(x)

= P 0
n

(x)2w(x) + [�xP 0
n

(x) + nP
n

(x)]P
n

(x)w(x)

= P 0
n

(x)2w(x) +
⇥
�x

p
nP

n�1(x) + nP
n

(x)
⇤
P
n

(x)w(x),
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where the last equality follows from (4.5). By the Hermite recurrence relation (4.4),

�x
p
nP

n�1(x) + nP
n

(x) = �
p

n(n� 1)P
n�2(x),

and again by (4.5), the RHS of this equation is equal to P 00
n

(x), so

�0
n

(x)2 +

✓
n� x2

4

◆
�
n

(x)2 =

�
P 0
n

(x)2 � P 00
n

(x)P
n

(x)
�
w(x).

Then by (4.8), we have that

K
n

(x, x) = �0
n

(x)2 +

✓
n� x2

4

◆
�
n

(x)2.

Recall from above that we were interested in the asymptotic behavior of E
n

= n�1/2K
n

(

p
nx,

p
nx),

since the rescaled expected empirical spectral measure of the GUE is given by E
n

dx. Now

E
n

= n�1/2�0
n

(

p
nx)2 +

p
n

✓
1� x2

4

◆
�
n

(

p
nx)2

= n�2 0
n

(x)2 +

✓
1� x2

4

◆
 
n

(x)2,

where  
n

is the rescaled Hermite function defined by  
n

(x) := n1/4�
n

(

p
nx).

Notice that  
n

satisfies the differential equation

�n�2 00
n

(x) +
x2

4

 
n

(x) = �n�3/4�00
n

(

p
nx) + n1/4x

2

4

�
n

(

p
nx)

= �n1/4n�1


�
✓
n+

1

2

◆
+ n

x2

4

�
�
n

(

p
nx) + n1/4x

2

4

�
n

(

p
nx)

=


n+

1
2

n
� x2

4

�
n1/4�

n

(

p
nx) +

x2

4

n1/4�
n

(

p
nx)

=

✓
1 +

1

2n

◆
 
n

,

i.e., L1/n n

=

�
1 +

1
2n

�
 
n

, where L
h

denotes the semiclassical harmonic oscillator operator

L
h

 = �h2 00
+

x2

4

 .

Then it is natural to analyze the eigenfunction equation

L
h

 = � ,

or equivalently,

 00
= �

✓
�� x2

4

◆
 = � 1

h2
k(x)2 , (4.9)

where k(x) :=
p
�� x2/4 (so we consider only the region where x2/4 < �). We will eventually take

h > 0 to be 1/n (small when n is large) and � to be 1 +

1
2n (nearly 1 when n is large).
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5 Analysis of the eigenfunction equation of Lh

It is helpful, both intuitively and formally, to draw a comparison between (4.9) and the familiar
ODE  00

= �h�2k2 with constant coefficient, having as its solution  (x) = Aeikx/h + Be�ikx/h.
We then forward the ansatz

 (x) = A(x)ei (x)/h
+B(x)e�i (x)/h,

where  (x) =
R
x

0 k(y) dy, i.e.,  is an antiderivative of k. We obtain by differentiating:

 0
(x) =

ik(x)

h

⇣
A(x)ei (x)/h �B(x)e�i (x)/h

⌘
+A0

(x)ei (x)/h
+B0

(x)e�i (x)/h.

Since we are ‘solving’ for two functions A and B, heuristically we expect to be able to put an
additional constraint on A and B, namely

A0
(x)ei (x)/h

+B0
(x)e�i (x)/h

= 0. (5.1)

We will see later that the expressions for A and B that we obtain do indeed satisfy this equation.

Again we differentiate, yielding

 00
(x) = �k(x)2

h2
 (x) +

ik0(x)

h

⇣
A(x)ei (x)/h �B(x)e�i (x)/h

⌘

+

ik(x)

h

⇣
A0

(x)ei (x)/h �B0
(x)e�i (x)/h

⌘
.

Referring back to (4.9), we see that then

A0
(x)ei (x)/h �B0

(x)e�i (x)/h
= �k0(x)

k(x)

⇣
A(x)ei (x)/h �B(x)e�i (x)/h

⌘
.

Adding and subtracting this equation with (5.1), we obtain

2A0
(x)ei (x)/h

= �k0(x)

k(x)

⇣
A(x)ei (x)/h �B(x)e�i (x)/h

⌘

2B0
(x)e�i (x)/h

=

k0(x)

k(x)

⇣
A(x)ei (x)/h �B(x)e�i (x)/h

⌘
,

or equivalently

A0
(x) = � k0(x)

2k(x)
A(x) +

k0(x)

2k(x)
B(x)e�2i (x)/h

B0
(x) = � k0(x)

2k(x)
B(x) +

k0(x)

2k(x)
A(x)e2i (x)/h.

Define a(x) = k(x)1/2A(x) and b(x) = k(x)1/2B(x), so

A(x) = k(x)�1/2a(x), B(x) = k(x)�1/2b(x),

10



and also

a0(x) = k(x)1/2A0
(x) +

k0(x)

2k(x)1/2
A(x)

=

k0(x)

2k(x)1/2
B(x)e�2i (x)/h

=

k0(x)

2k(x)
b(x)e�2i (x)/h,

i.e.,

a0(x) =
k0(x)

2k(x)
b(x)e�2i (x)/h, (5.2)

and similarly

b0(x) =
k0(x)

2k(x)
a(x)e2i (x)/h.

Then on any compact interval I contained within (�2, 2), we have that a0, b0 = O(|a|, |b|). Fur-
thermore, by Gronwall’s inequality we have that |a(x)|  C1|b(0)| and |b(x)|  C2|a(0)| on I for
constants C1, C2 depending only on I. Therefore

a0, b0, a, b = O(|a(0)|+ |b(0)|)

on I.

Now by (5.2), we have

a(x)� a(0) =

Z
x

0
a0(u) du

=

Z
x

0

k0(u)

2k(u)
b(u)e�2i (u)/h du

=

Z  (x)

0

k0
�
 

�1
(v)
�

2k ( �1
(v))

�
 

�1
�0
(v)b

�
 

�1
(v)
�
e�2iv/h dv,

where we have made the substitution v =  (u) (note that  is strictly increasing, hence invertible,
since k is positive). Then integrating by parts we obtain

a(x)� a(0) =
�h

2i

0

@
"
k0
�
 

�1
(v)
�

2k ( �1
(v))

�
 

�1
�0
(v)b

�
 

�1
(v)
�
e�2iv/h

#
v= (x)

v=0

�
Z  (x)

0
F (v)e�2iv/h dv

1

A ,

where

F (v) =
d

dv

"
k0
�
 

�1
(v)
�

2k ( �1
(v))

�
 

�1
�0
(v)b

�
 

�1
(v)
�
#
.

In particular is a smooth function on I that does not depend on h, and furthermore from the product
rule it is clear that F = O(|b|+ |b0|). It follows from our earlier finding that F = O(|b(0)|+ |b0(0)|).
Evidently then

a(x) = a(0) +O (h [|a(0)|+ |b(0)|]) ,

11



and by analogous reasoning we obtain

b(x) = b(0) +O (h [|a(0)|+ |b(0)|]) .

We have thus shown the following:

Theorem. Suppose that L
h

 = � . Then on any compact interval contained in (�2, 2),

 (x) = k(x)�1/2
⇣
a(x)ei (x)/h

+ b(x)e�i (x)/h
⌘
,

where

a(x) = a(0) +O (h [|a(0)|+ |b(0)|]) , b(x) = b(0) +O (h [|a(0)|+ |b(0)|]) .

Furthermore

 0
(x) =

ik(x)1/2

h

⇣
a(x)ei (x)/h � b(x)e�i (x)/h

⌘
.

6 Asymptotics for the GUE expected empirical spectral mea-
sure

Now plugging in � = 1+

1
2n and h =

1
n

, we see that on any compact interval I contained in (�2, 2),

 
n

= k(x)�1/2
⇣
a(x)ein (x)

+ b(x)e�in (x)
⌘
,

where
a(x) = a(0) +O

�
n�1

[|a(0)|+ |b(0)|]
�
, b(x) = b(0) +O

�
n�1

[|a(0)|+ |b(0)|]
�
,

and furthermore
 0
n

(x) = nik(x)1/2
⇣
a(x)ein (x) � b(x)e�in (x)

⌘
.

In the following the reader should note that a and b depend on n, though we omit this dependence
from the notation. Recall from above that the density of the expected empirical spectral measure is
given by

E
n

(x) =

✓
1� x2

4

◆
| 

n

(x)|2 + n�2| 0
n

(x)|2,

so

E
n

(x) =

���a(x)ein (x)
+ b(x)e�in (x)

���
2
k(x)�1

✓
1� x2

4

◆

+

���a(x)ein (x) � b(x)e�in (x)
���
2
k(x)

=

h
|a(x)|2 + |b(x)|2 + 2<

⇣
a(x)b(x)e2in (x)

⌘i
k(x)�1

✓
1� x2

4

◆

+

h
|a(x)|2 + |b(x)|2 � 2<

⇣
a(x)b(x)e2in (x)

⌘i
k(x)

=

⇥
|a(x)|2 + |b(x)|2

⇤ 
k(x)�1

✓
1� x2

4

◆
+ k(x)

�

12



+ 2<
⇣
a(x)b(x)e2in (x)

⌘
k(x)�1

✓
1� x2

4

◆
� k(x)

�
. (6.1)

Notice that k(x) =

q
1 +

1
2n � x

2

4 , so k(x)�1
⇣
1� x

2

4

⌘
⇡
q

1� x

2

4 for large n. We will make this
notion more precise. Indeed, we have that


k(x)�1

✓
1� x2

4

◆�2
=

⇣
1� x

2

4

⌘2

1 +

1
2n � x

2

4

=

⇣
1 +

1
2n � x

2

4

⌘2
� 1

n

⇣
1� x

2

4

⌘
� 1

4n2

1 +

1
2n � x

2

4

=

✓
1 +

1

2n
� x2

4

◆
� 1

n
·

⇣
1� x

2

4

⌘
+

1
4n

1 +

1
2n � x

2

4

= 1� x2

4

+O

✓
1

n

◆
.

Notice that for ↵ � � > 0, we have that ↵ � �  ↵ + �, and (↵ � �)2  ↵2 � �2. Thus in fact for
all ↵,� > 0 we have that (↵� �)2  |↵2 � �2|, so

"
k(x)�1

✓
1� x2

4

◆
�
r
1� x2

4

#2
= O

✓
1

n

◆
,

and

k(x)�1

✓
1� x2

4

◆
=

r
1� x2

4

+ o(1).

Similarly, it is easy to show that k(x) =
q

1� x

2

4 + o(1). Then we have from (6.1) that

E
n

(x) =
⇥
|a(x)|2 + |b(x)|2

⇤ hp
4� x2

+ o(1)
i
+O(|a(x)||b(x)|) · o(1).

Of course since a, b = O(|a(0)|, |b(0)|), we in fact have that

E
n

(x) =
⇥
|a(x)|2 + |b(x)|2

⇤ hp
4� x2

+ o(1)
i
+O(|a(0)||b(0)|) · o(1). (6.2)

To proceed we approximate the ‘initial conditions’ a(0) and b(0). Recall (4.6) froma above, i.e., that

P
n

(x) =
(�1)

n

(2⇡)1/4
p
n!
ex

2
/2 dn

dxn

e�x

2
/2.

Using the Taylor expansion

e�x

2
/2

=

1X

k=0

(�1)

kx2k

2

kk!
,

13



we see that for even n,

P
n

(0) =

(�1)

n/2
p
n!

(2⇡)1/42n/2(n/2)!
, P 0

n

(0) = 0,

and for odd n,

P
n

(0) = 0, P 0
n

(0) =

(�1)

(n+1)/2
(n+ 1)

p
n!

(2⇡)1/42(n+1)/2
((n+ 1)/2)!

.

Now  
n

(0) = n1/4P
n

(0) and  0
n

(0) = n3/4�0
n

(0) = n3/4P 0
n

(0), and furthermore  
n

(0) = a(0) + b(0)
and  0

n

(0) = ni(a(0)� b(0)), so
8
<

:
a(0) + b(0) = (�1)n/2

n

1/4
p
n!

(2⇡)1/42n/2(n/2)!
, a(0)� b(0) = 0, n is even

a(0) + b(0) = 0, a(0)� b(0) = (�1)(n+1)/2
n

�1/4(n+1)
p
n!

i(2⇡)1/42(n+1)/2((n+1)/2)!
, n is odd.

Now recalling that n! ⇠
p
2⇡n (n/e)

n (Stirling’s approximation), we have that

(�1)

n/2n1/4
p
n!

(2⇡)1/42n/2(n/2)!
⇠ (�1)

n/2n
1/4

(2⇡)1/4n1/4nn/2e�n/2

(2⇡)1/42n/2(n/2)!

= (�1)

n/2n
1/2nn/2e�n/2

2

n/2
(n/2)!

⇠ (�1)

n/2 n1/2nn/2e�n/2

2

n/2⇡1/2n1/2nn/2
2

�n/2e�n/2

= (�1)

n/2⇡�1/2,

so
n1/4

p
n!

(2⇡)1/42n/2(n/2)!
! ⇡�1/2

as n ! 1. We also compute

(�1)

(n+1)/2n�1/4
(n+ 1)

p
n!

(2⇡)1/42(n+1)/2
((n+ 1)/2)!

⇠ (�1)

(n+1)/2n
�1/4

(n+ 1)(2⇡)1/4n1/4nn/2e�n/2

(2⇡)1/42(n+1)/2
((n+ 1)/2)!

= (�1)

(n+1)/2 (n+ 1)nn/2e�n/2

2

(n+1)/2
((n+ 1)/2)!

= (�1)

(n+1)/2 (n+ 1)nn/2e�n/2

2

(n+1)/2⇡1/2
(n+ 1)

1/2
(n+ 1)

(n+1)/2
(2e)�(n+1)/2

= (�1)

(n+1)/2⇡�1/2e1/2
✓

n

n+ 1

◆
n/2

= (�1)

(n+1)/2⇡�1/2e1/2
✓✓

1 +

1

n

◆
n

◆�1/2

⇠ (�1)

(n+1)/2⇡�1/2,

so
n�1/4

(n+ 1)

p
n!

(2⇡)1/42(n+1)/2
((n+ 1)/2)!

! ⇡�1/2.
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Now when n is even, a(0) = b(0), so a(0) = b(0) = 1
2 (a(0) + b(0)). When n is odd, a(0) = �b(0), so

a(0) = �b(0) = 1
2 (a(0) � b(0)). It follows that we have that |a(0)|, |b(0)| ! 1

2⇡
�1/2 as n ! 1, so

|a(0)|2 + |b(0)|2 ! 1
2⇡ as n ! 1.

Recall (6.2) from above, i.e., that

E
n

(x) =
⇥
|a(x)|2 + |b(x)|2

⇤ hp
4� x2

+ o(1)
i
+O(|a(0)||b(0)|) · o(1).

Also recall that

a(x) = a(0) +O
�
n�1

[|a(0)|+ |b(0)|]
�
, b(x) = b(0) +O

�
n�1

[|a(0)|+ |b(0)|]
�
.

But since |a(0)|, |b(0)| ! 1
2⇡

�1/2, so |a(0)|+ |b(0)| and |a(0)||b(0)| are both bounded uniformly in n,
and in fact

a(x) = a(0) +O(n�1
), b(x) = b(0) +O(n�1

),

and O(|a(0)||b(0)|) = O(1). Thus
�
|a|2 + |b|2

�
�
�
|a(0)|2 + |b(0)|2

�
! 0 uniformly on I as n ! 1,

so |a|2 + |b|2 ! 1
2⇡ uniformly on I as n ! 1, i.e., |a|2 + |b|2 =

1
2⇡ + o(1). Then we have shown that

E
n

(x) =


1

2⇡
+ o(1)

� hp
4� x2

+ o(1)
i
+ o(1)

=

1

2⇡

p
4� x2

+ o(1),

or, in other words, E
n

(x)� 1
2⇡

p
4� x2 converges to zero uniformly on I.

Now let ⇠ : R ! R be measurable, bounded, and supported on a compact interval I ⇢ (�2, 2).
Now E

n

(x)� 1
2⇡

p
4� x2 ! 0 uniformly on I, so

Z 2

�2
|⇠(x)|

����En

(x)� 1

2⇡

p
4� x2

���� dx ! 0

by bounded convergence, and consequently
R 2
�2 ⇠En

! 1
2⇡

R 2
�2 ⇠(x)

p
4� x2 dx.

In particular, letting I
m

= [�2 + m�1, 2 � m�1
] and taking ⇠ ⌘ �

Im we see that
R
Im

E
n

!
1
2⇡

R
Im

p
4� x2 dx. Of course,

R
R E

n

= 1, so it follows that
R
R\Im E

n

! 1� 1
2⇡

R
Im

p
4� x2 dx.

Now let ⇠ : R ! R be bounded and continuous, so |⇠|  B everywhere for some B > 0. Then
Z

|⇠(x)|
����En

(x)� 1

2⇡

q
(4� x2

)+

���� dx 
Z

Im

|⇠(x)|
����En

(x)� 1

2⇡

p
4� x2

���� dx

+

Z

R\Im
|⇠(x)|E

n

(x) dx

+

Z

R\Im
|⇠(x)| 1

2⇡

q
(4� x2

)+ dx.
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The first term in the last expression converges to zero by our previous argument, and the second
term is bounded by B

R
R\Im E

n

(x) dx, which converges to B
⇣
1� 1

2⇡

R
Im

p
4� x2 dx

⌘
. Thus

lim sup

n!1

Z
|⇠(x)|

����En

(x)� 1

2⇡

q
(4� x2

)+

���� dx  2B

✓
1� 1

2⇡

Z

Im

p
4� x2 dx

◆
.

The RHS of this inequality can be made arbitrarily small by taking m sufficiently large since
1
2⇡

R 2
�2

p
4� x2 dx = 1, so in fact

lim

n!1

Z
|⇠(x)|

����En

(x)� 1

2⇡

q
(4� x2

)+

���� dx = 0.

It follows that Z
⇠E

n

! 1

2⇡

Z 2

�2
⇠(x)

q
(4� x2

)+ dx.

We collect our results into the following theorem:

Theorem. Eµ
Mn/

p
n

= E
n

dx ! ⇢sc dx weakly, where ⇢sc(x) =

1
2⇡

q
(4� x2

)+. Furthermore,

E
n

! ⇢sc uniformly on any compact interval contained in (�2, 2) , and E
n

! ⇢sc ⌘ 0 in L1
on

R\[�2, 2].

7 Connection with the quantum harmonic oscillator
Recall from the preceding section that we denote by P

n

the Hermite polynomials orthonormal with
respect to w(x) = e�x

2
/2. Further we have defined �

n

= P
n

w1/2 and  
n

(x) = n1/4�
n

(

p
nx), so

Z
 2
n

=

p
n

Z
�2
n

(

p
nx) dx =

Z
�2
n

dx =

Z
P
n

(x)2w(x) dx = 1,

i.e., k 
n

k
L

2
= 1. In fact the �

n

are (modulo horizontal rescaling) the normalized stationary states
for the quantum-mechanical harmonic oscillator. See, for example, Griffiths [2] for a discussion of
the harmonic oscillator.

In Griffiths [2], it is indicated graphically that the �2
n

converge in some sense to the density of
the classical distribution of the harmonic oscillator. We will formulate and prove this convergence
precisely.

Consider the harmonic oscillator defined by

x(t) = A cos (!t) .

It is clear that the amount of time per period for which x(t) � y (for y 2 [�A,A]) is given by
2!�1

cos

�1
(y/A), and the period of oscillation is 2⇡/!, so the fraction of time for which x(t) � y is

given by 1� ⇡ cos�1
(y/A).
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It follows the stationary distribution function F for the position of the harmonic oscillator satisfies
F (y) = 1� ⇡ cos�1

(y/A) for y 2 [�A,A], and the corresponding probability density function is

f(y) = F 0
(y) =

1

A⇡

✓
1�

⇣ x
A

⌘2◆�1/2

.

Without loss of much generality, we fix A = 2, so

f(x) =
1

2⇡

✓
1� x2

4

◆�1/2

+

.

In fact we must rescale the �2
n

to obtain convergence to the classical density f . More precisely, we
have the following:

Theorem. For any bounded continuous function ⇠ : R ! R,

R
 2
n

⇠ !
R
f⇠.

Proof. Let ⇠ : R ! R be continuous with |⇠|  B for some B > 0. From the preceding section, we
have that on any compact interval I contained in (�2, 2),

 
n

(x)2 = k(x)�1
⇣
a(x)ein (x)

+ b(x)e�in (x)
⌘2

,

where
a(x) = a(0) +O

�
n�1

�
, b(x) = b(0) +O

�
n�1

�
.

(Recall that a and b depend on n). Furthermore, we showed that a(0) ! 1
2⇡

�1/2 and b(0) =

(�1)

na(0). Then we have that

 
n

(x)2 = k(x)�1a(0)2
⇣
ein (x)

+ (�1)

ne�in (x)
+O

�
n�1

�⌘2

on I.

Let
g
n

(x) = k(x)�1a(0)2
⇣
ein (x)

+ (�1)

ne�in (x)
⌘2

for x 2 (�2, 2). We claim that
R
I

 2
n

⇠ �
R
I

g
n

⇠ ! 0. Indeed,

 2
n

(x)� g
n

(x) = k(x)�1a(0)2 ·O(n�1
),

and a(0) is bounded uniformly in n, so
Z

I

| 2
n

� g
n

||⇠| ! 0

by bounded convergence, and the claim follows.

Then define
h
n

(x) = k(x)�1⇡�1 1

4

⇣
ein (x)

+ (�1)

ne�in (x)
⌘2
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for x 2 (�2, 2). We claim that
R
I

g
n

⇠ �
R
I

h
n

⇠ ! 0. Indeed we have that

g
n

� h
n

= k(x)�1
⇣
ein (x)

+ (�1)

ne�in (x)
⌘2✓

a(0)2 � 1

4

⇡�1

◆
,

so again our claim follows from bounded convergence.

Now
Z

I

h
n

⇠ =

1

4⇡

Z

I

k(x)�1
⇣
ein (x)

+ (�1)

ne�in (x)
⌘2
⇠(x) dx

=

1

4⇡

Z

 (I)
k
�
 

�1
(x)
��1 �

einx + (�1)

ne�inx

�2
⇠
�
 

�1
(x)
� �
 

�1
�0
(x) dx

=

1

4⇡

Z �
einx + (�1)

ne�inx

�2
⇣(x) dx,

where
⇣(x) = k

�
 

�1
(x)
��1

⇠
�
 

�1
(x)
� �
 

�1
�0
(x)� (I)(x),

so ⇣ 2 L1
(R) \ L2

(R).

Then by the Plancherel identity, since

F
h�
einx + (�1)

ne�inx

�2i
(u) = (�1)

n�

✓
u� 2n

2⇡

◆
+ 2�(u) + (�1)

n�

✓
u+

2n

2⇡

◆
,

we have that Z

I

h
n

⇠ =
1

4⇡

✓
(�1)

n


ˆ⇣

✓
�2n

2⇡

◆
+

ˆ⇣

✓
2n

2⇡

◆�
+ 2

ˆ⇣(0)

◆
.

By the Riemann-Lebesgue lemma, (�1)

n

h
ˆ⇣
�
� 2n

2⇡

�
+

ˆ⇣
�
2n
2⇡

�i
! 0 as n ! 1. Furthermore,

ˆ⇣(0) =

Z

 (I)
k
�
 

�1
(x)
��1

⇠
�
 

�1
(x)
� �
 

�1
�0
(x) dx

=

Z

I

k(x)�1⇠(x) dx.

Thus Z

I

h
n

⇠ �
Z

1

2⇡
k(x)�1⇠(x) dx ! 0

as n ! 1.

We showed in the preceding section that k(x) !
⇣
1� x

2

4

⌘1/2
uniformly on I as n ! 1, and

since k is bounded away from 0 on I it follows that k(x)�1 !
⇣
1� x

2

4

⌘�1/2
= 2⇡f(x) uniformly on

I. Therefore Z
1

2⇡
k(x)�1⇠(x) dx�

Z
f⇠ dx ! 0
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as n ! 1.

Putting together our results, we have shown that
R
I

 2
n

⇠ !
R
I

f⇠ dx as n ! 1. Now we could
have taken ⇠ ⌘ 1 in the preceding, so in particular we have that

R
I

 2
n

!
R
I

f as n ! 1. Of course,
 2
n

is a probability density, so
R
R\I  

2
n

! 1�
R
I

f .

Now
����
Z

R
 2
n

⇠ �
Z

R
f⇠

���� 
����
Z

I

 2
n

⇠ �
Z

I

f⇠

����+

�����

Z

R\I
 2
n

⇠

�����+

�����

Z

R\I
f⇠

�����


����
Z

I

 2
n

⇠ �
Z

I

f⇠

����+B

Z

R\I
 2
n

+B

Z

R\I
f

! 2B

✓
1�

Z

I

f

◆
.

Now by taking I = [�2 + m�1, 2 � m�1
] for m sufficiently large, we can make the last expression

above arbitrarily small (since
R
I

f = 1). Therefore
R
R  

2
n

⇠ !
R
R f⇠ as n ! 1, and the proof is

complete.
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