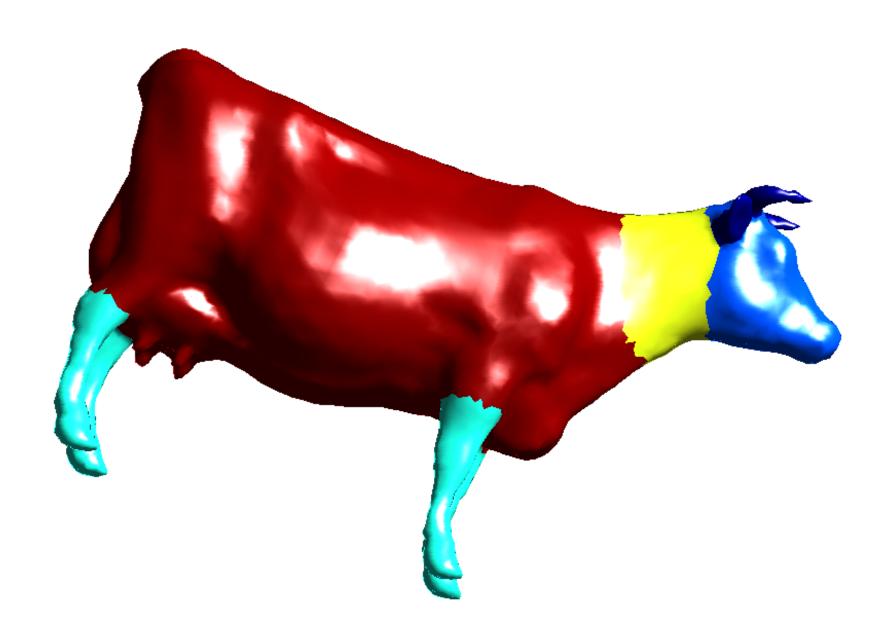
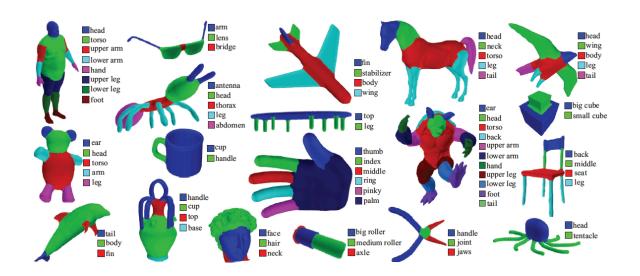
3D Shape Analysis Using Machine Learning

Student: Michael Lindsey
CURIS Project
Guibas Lab



Introduction

- Immediate goal of project: mesh segmentation with labeling
- Only previous work: Kalogerakis et al. 2010
 - Good results
 - Very slow: 8 hours to train on 6 meshes (Xeon E5355 2.66 GHz)



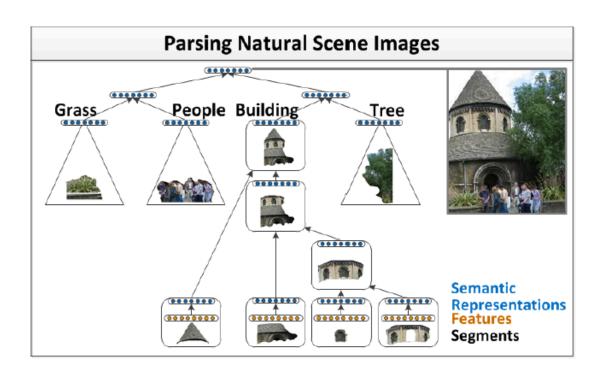
Introduction

- Idea: use features at level of superpixel-like patches
- Adapt method of Socher et al. 2011
 - Used for image segmentation, sentence parsing
 - RNN which learns semantic embedding
- More nebulous/more interesting goal: learn a meaningful embedding of per-superpixel features into "semantic space"
 - Investigate the structure of this space
 - Recover descriptors at all levels

Outline

- Machine learning method
- Oversegmentation
- Features (old and new)
- Segmentation results
- Applications of semantic embedding to shape understanding
- Future directions

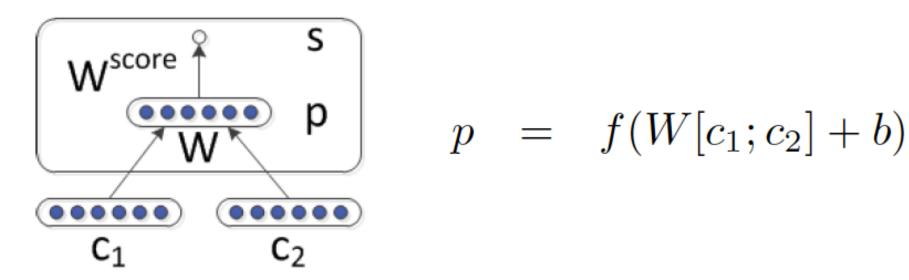
Socher's recursive neural network for image segmentation



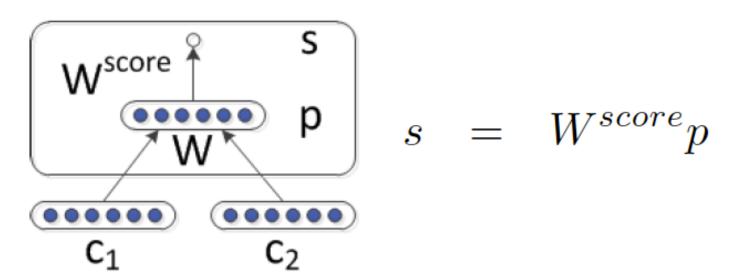
Semantic embedding of superpixels:

$$a_i = f(W^{sem}F_i + b^{sem})$$

Semantic embedding of patches:



Scoring the joined patches:



Labeling joined patches:

$$label_p = softmax(W^{label}p)$$

Oversegmentation

- Need to respect true segment boundaries
- Concave creases
- Edge function from Lai et al. 2009:

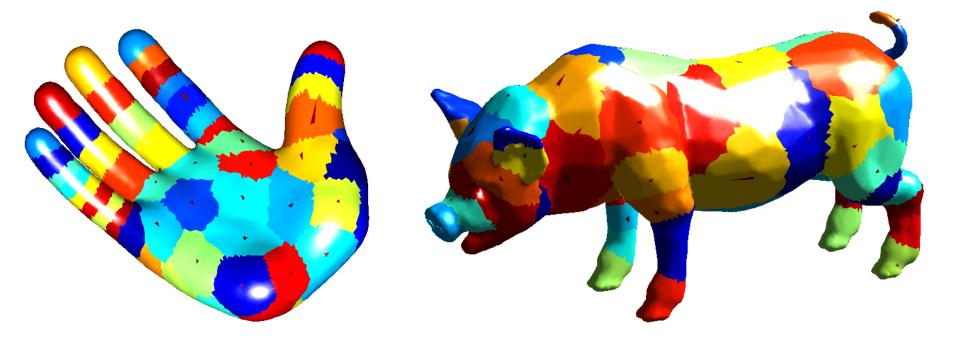
$$d_1(f_i, f_{i,k}) = \eta \left[1 - \cos\left(\text{dihedral}(f_i, f_{i,k})\right)\right] = \frac{\eta}{2} ||\mathbf{N}_i - \mathbf{N}_{i,k}||^2$$

$$d(f_i, f_{i,k}) = \frac{d_1(f_i, f_{i,k})}{\bar{d}_1}$$

$$p_{i,k} = |e_{i,k}| \exp \left\{-\frac{d(f_i, f_{i,k})}{\sigma}\right\}$$

Oversegmentation

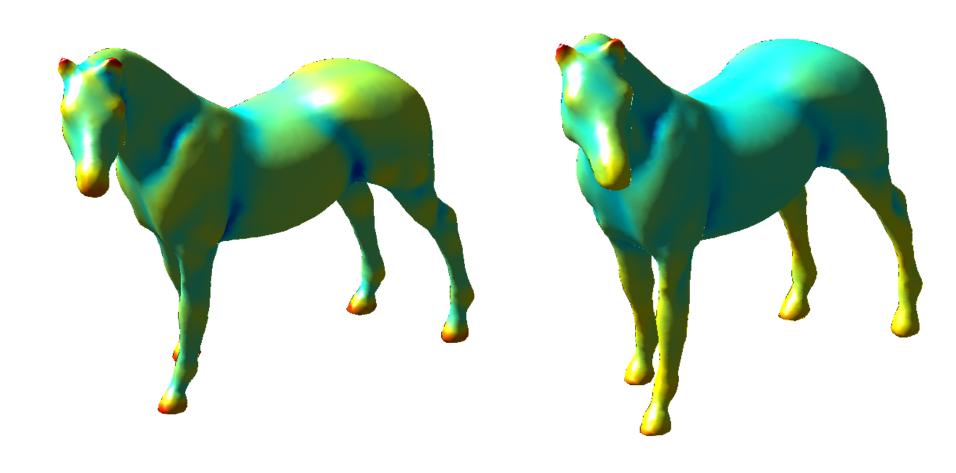
- Use this function for weighted adjacency matrix
- Construct Laplacian from weighted adjacency matrix
- k-means on spectral embedding



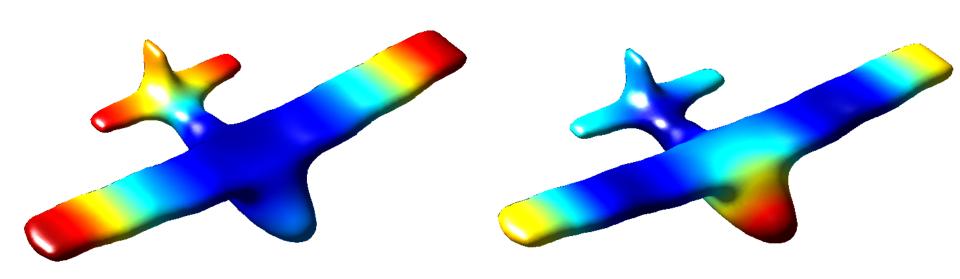
Features

$$a_i = f(W^{sem}F_i + b^{sem})$$

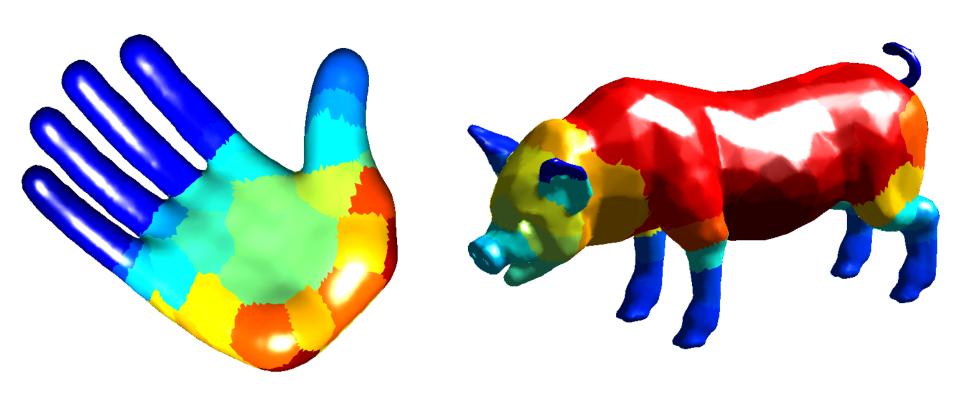
Features: curvatures



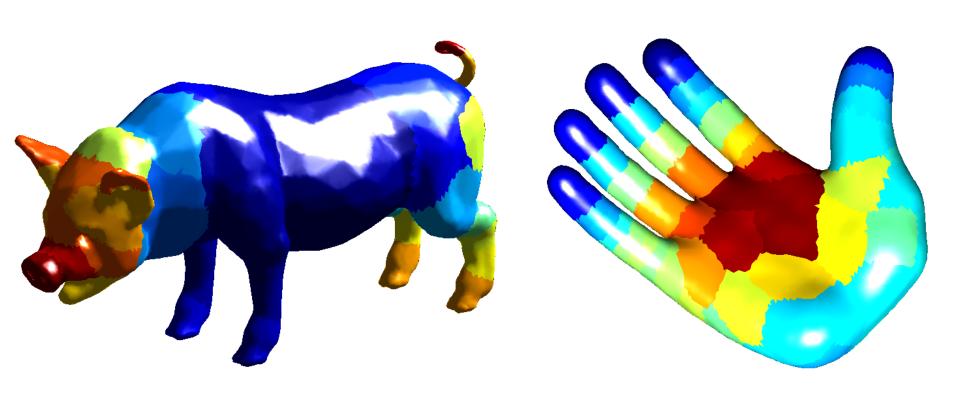
Features: HKS, WKS



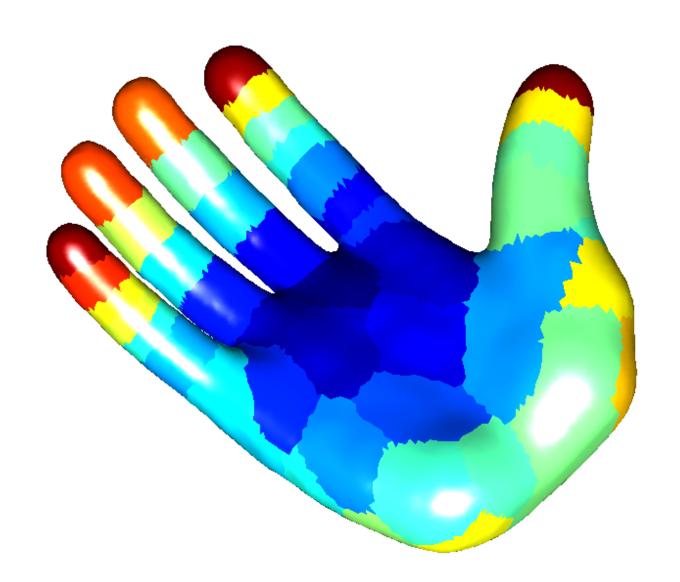
Features: shape diameters



Features: shape contexts

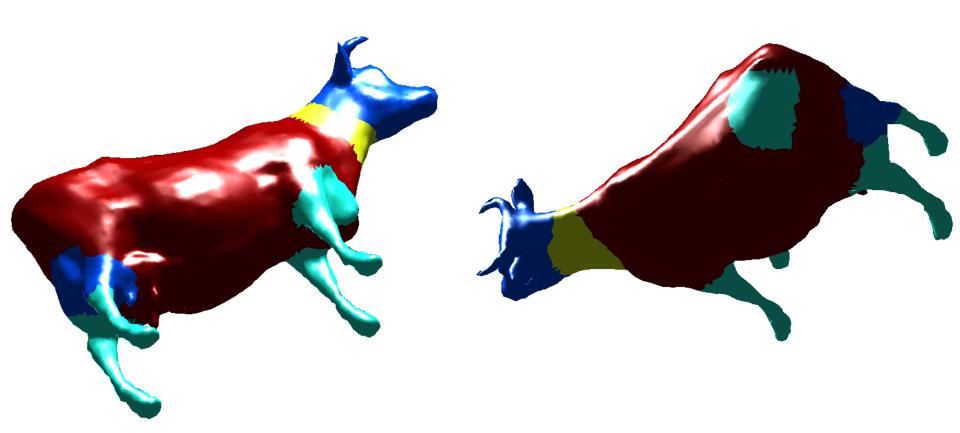


Features: average geodesic distance



(Old) segmentation results

Difficult to encode intrinsic location information

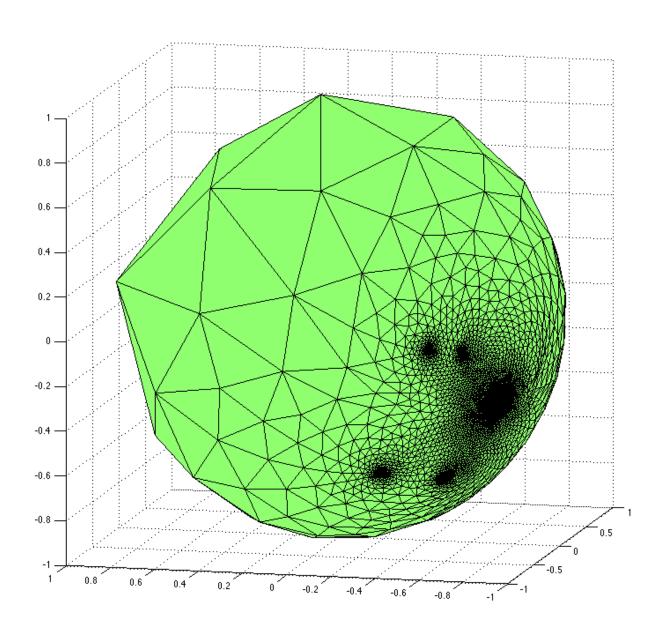


Conformal features

Steps:

1. Initial conformal mapping to sphere (Haker et al. 2000)

Bad area distortion



Conformal features

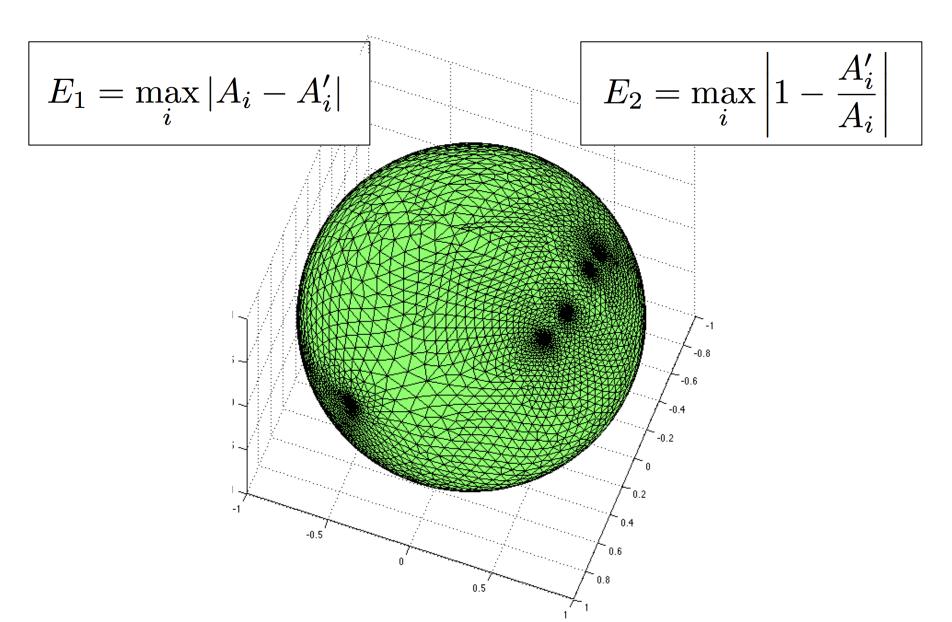
Steps:

- 1. Initial conformal mapping to sphere (Haker et al. 2000)
- 2. Minimize area distortion, as measured by

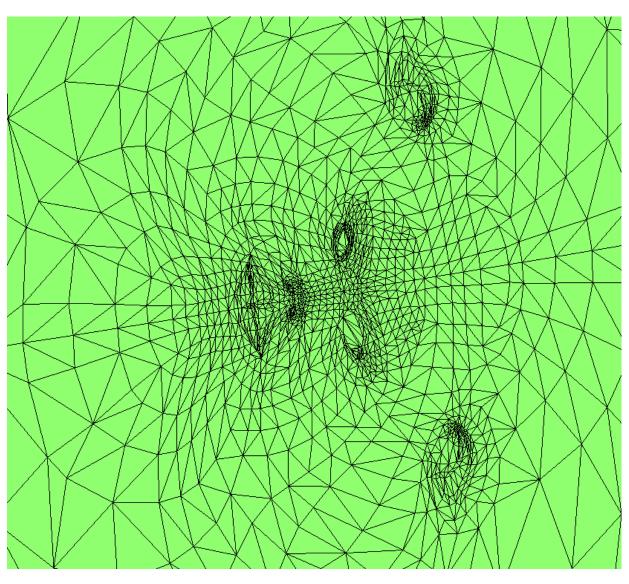
$$E_1 = \max_i |A_i - A_i'|$$

$$E_1 = \max_{i} |A_i - A_i'| \quad E_2 = \max_{i} \left| 1 - \frac{A_i'}{A_i} \right|$$

Desirable area distortion



Desirable area distortion



Conformal features

Steps:

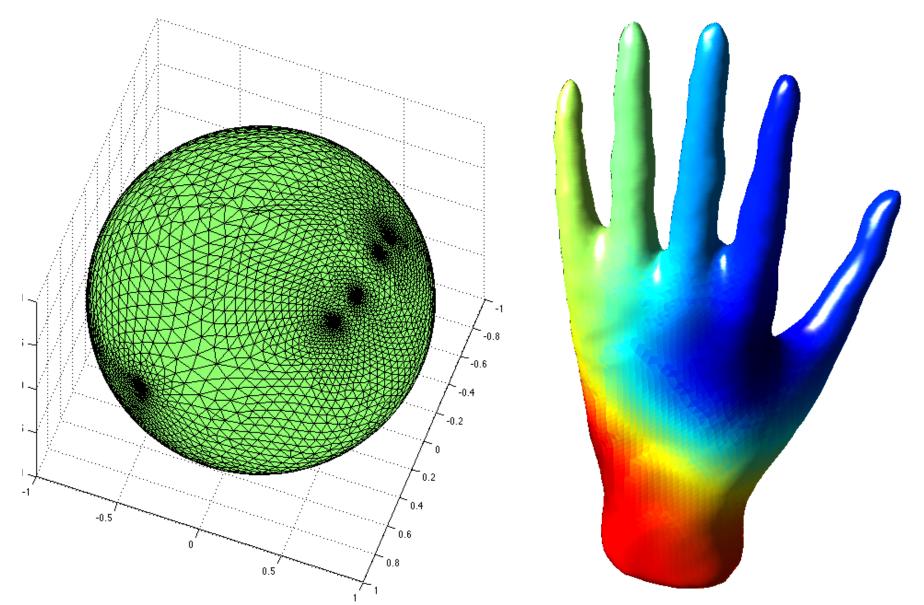
- Initial conformal mapping to sphere (Haker et al. 2000)
- 2. Minimize area distortion, as measured by

$$E_1 = \max_{i} |A_i - A'_i| \quad \left| \quad E_2 = \max_{i} \left| 1 - \frac{A'_i}{A_i} \right| \right|$$

$$E_2 = \max_i \left| 1 - \frac{A_i'}{A_i} \right|$$

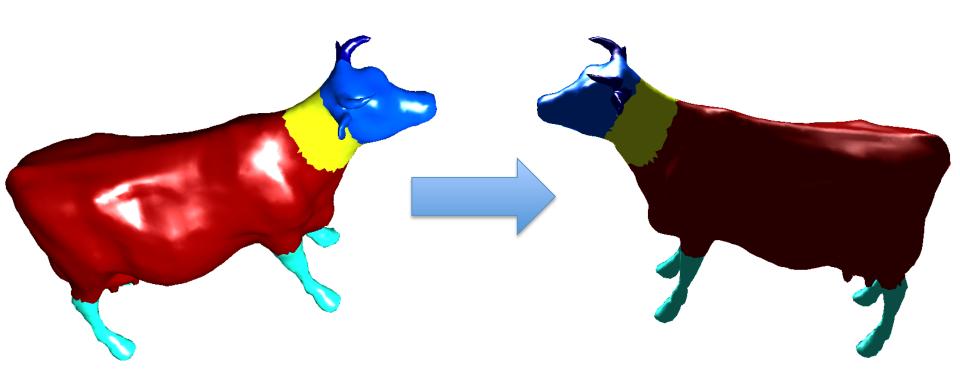
- 3. Extract and average features
 - Distance to k-th nearest neighbor
 - Mean geodesic distance to p% closest vertices
 - Mean square distance to p% closest vertices
 - Mean log(distance⁻¹) to p% closest vertices

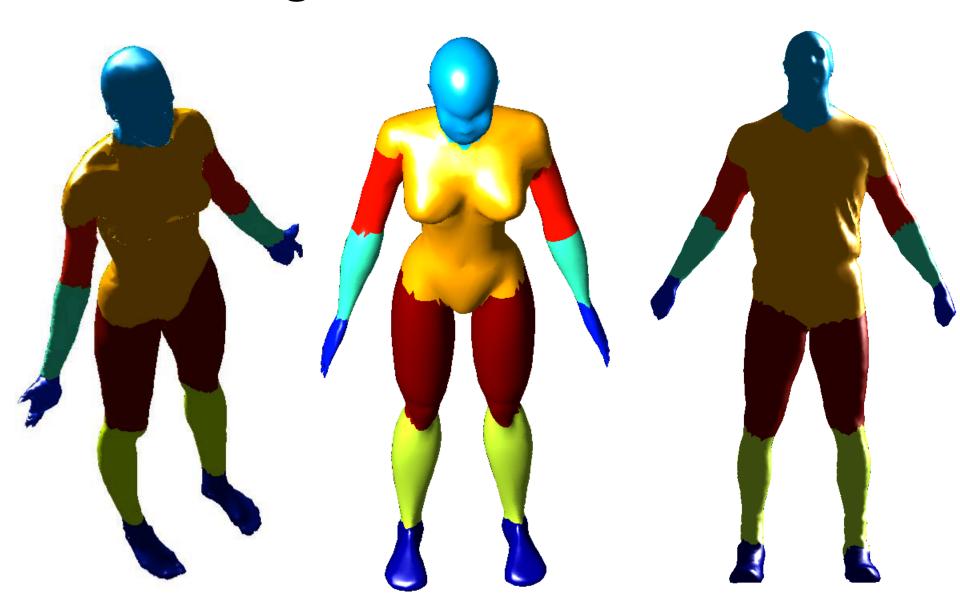
Conformal features

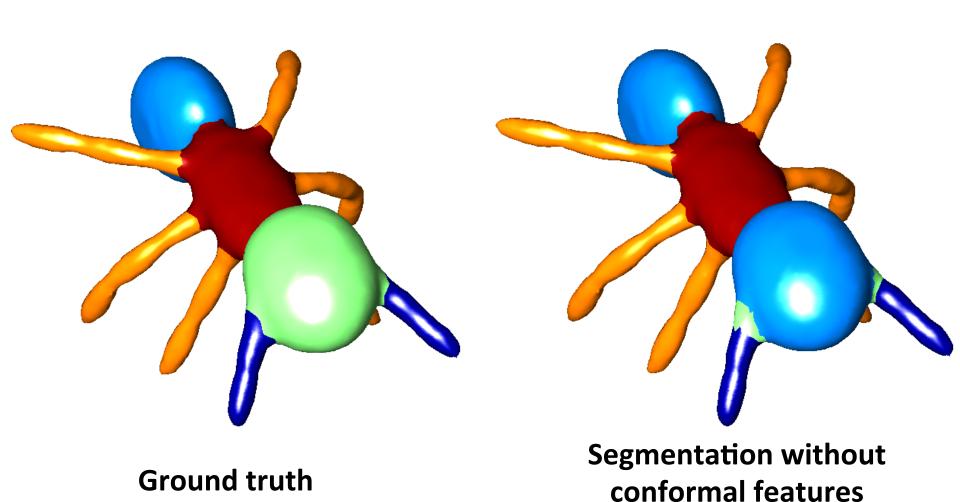


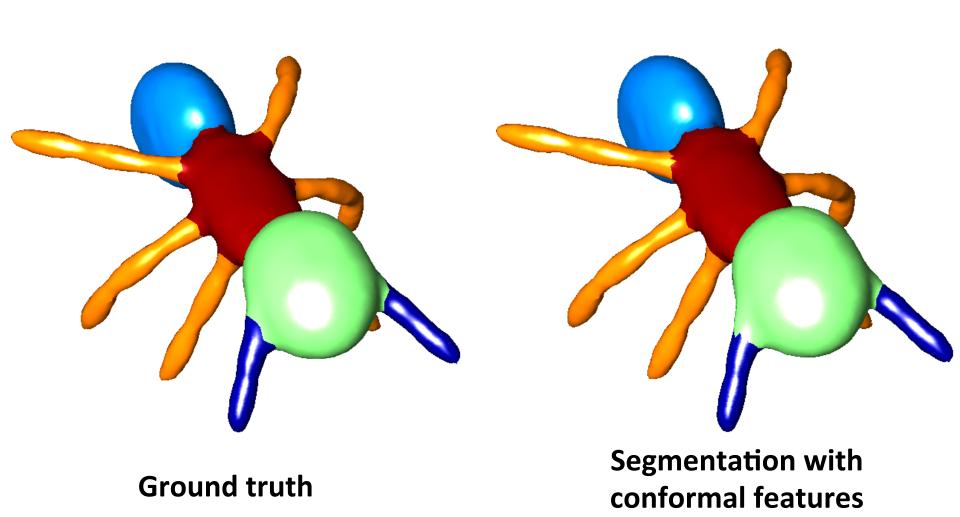
Features: contextual label features

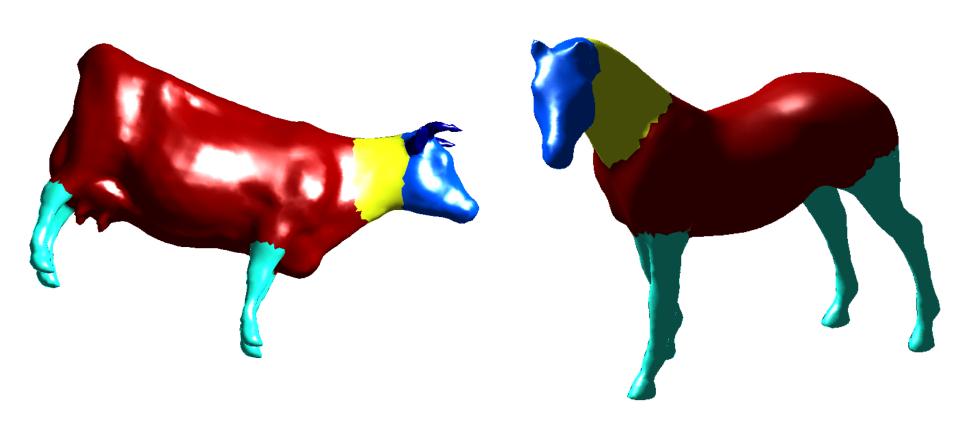
$$p_i^l = \sum_{j: d_b \le \operatorname{dist}(i,j) < d_{b+1}} a_j \cdot P(c_j = l)$$











Investigating the semantic embedding

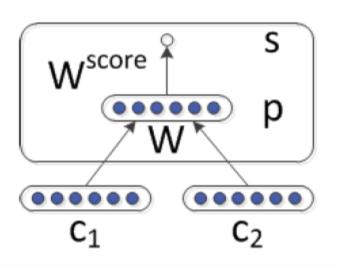
- Trained on SCAPE dataset (72 different poses of same human)
 - Used point-to-point correspondences for defining training segmentation
- Then recovered semantic embedding of feature vectors for superpixels

$$a_i = f(W^{sem}F_i + b^{sem})$$

Ground truth

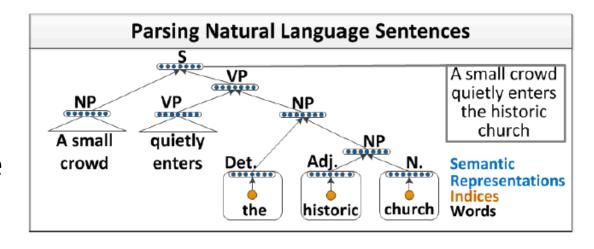
Segmentation result (does not use point correspondences)

How to join superpixels?



$$p = f(W[c_1; c_2] + b)$$

- Socher uses greedy approach to build trees
- Get degenerate tree structures which are undesirable for meshes



Semantic space PCA plots

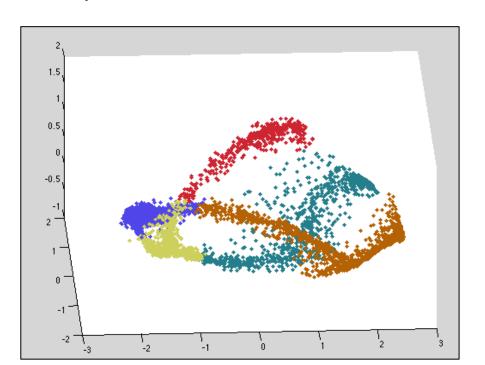
Bottom left: semantic features at superpixel level

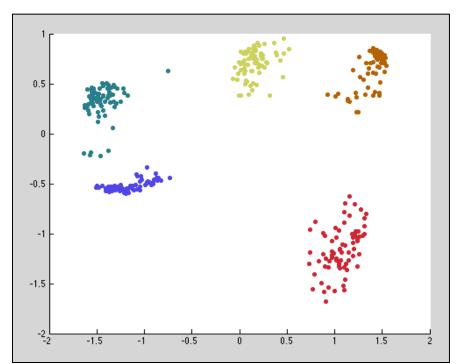
Top right: semantic features at segment

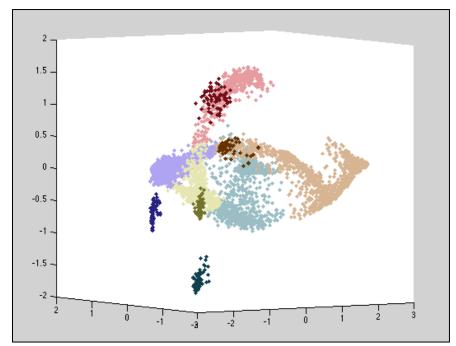
level

Bottom right: both in same plot

(Red = head, burnt orange = legs, purple = waist, teal-green = arms, yellow-green = torso)







Reference

Segmentation

Shape nearest neighbors: LEGS

- Reference pose shown at left
- We take the nearest/farthest neighbors of the semantic vector for reference legs

Reference

Segmentation

1st nearest neighbor

3rd nearest neighbor

2nd nearest neighbor

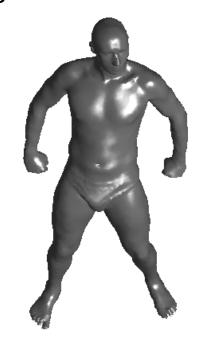
4th nearest neighbor

Reference

Segmentation

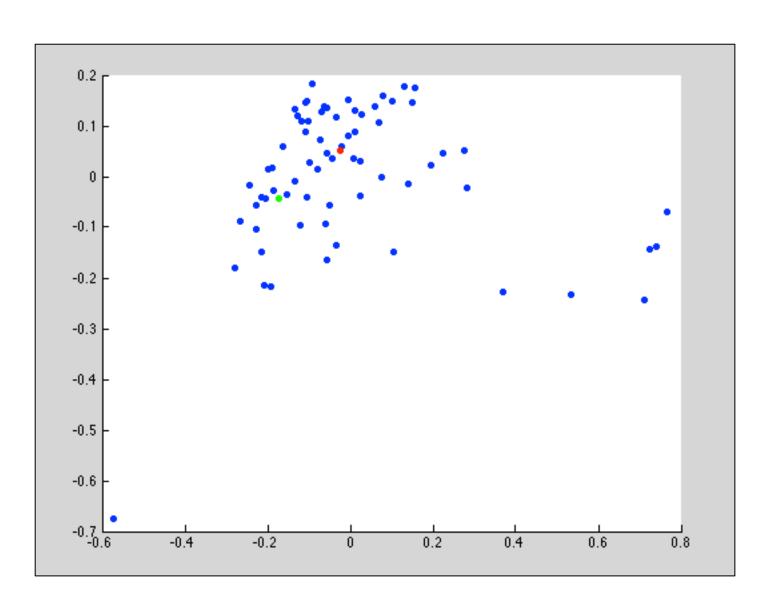
1st farthest neighbor

2nd farthest neighbor

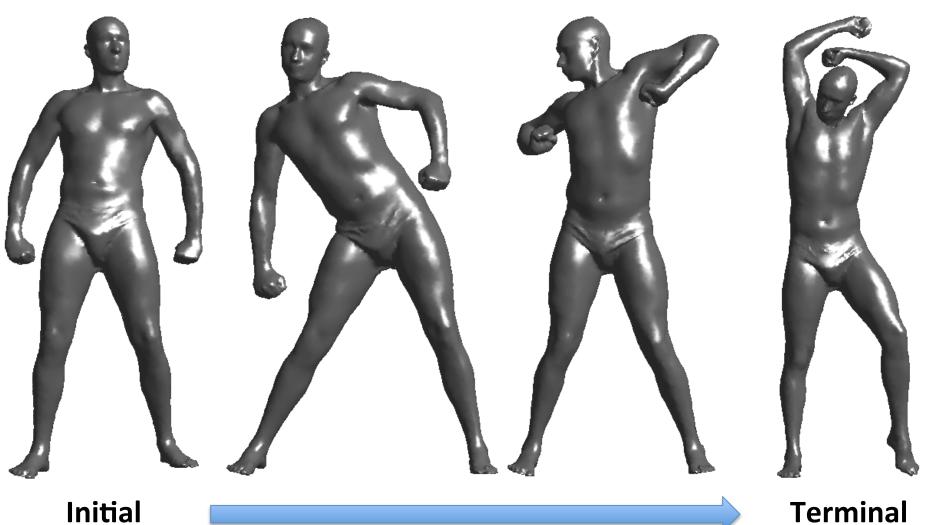


3rd farthest neighbor

Shape interpolation: ARMS



Shape interpolation



Terminal

Further work/future directions

- Tuning the model, removing redundant or useless features for increased speed
- Investigating alterations to learning model/ objective function
 - Dealing with combinatorial explosion to learn correct tree structure
- Adding boundary features

Conclusions

- Segmentation
 - Shape correspondences between non-(nearly)isometric meshes (e.g., horse and cow)
- Interesting shape descriptor from semantic embedding
 - Shape understanding

Objective function:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} r_i(\theta) + \frac{\lambda}{2} ||\theta||^2, \text{ where}$$

$$r_i(\theta) = \max_{\hat{y} \in \mathcal{T}(x_i)} \left(s(\text{RNN}(\theta, x_i, \hat{y})) + \Delta(x_i, l_i, \hat{y}) \right)$$

$$- \max_{y_i \in Y(x_i, l_i)} \left(s(\text{RNN}(\theta, x_i, y_i)) \right)$$

Margin loss:

$$\Delta(x, l, \hat{y}) = \kappa \sum_{d \in N(\hat{y})} \mathbf{1} \{ subTree(d) \notin Y(x, l) \}$$