3D Shape Analysis Using Machine Learning

Student: Michael Lindsey
CURIS Project
Guibas Lab

Introduction

- Immediate goal of project: mesh segmentation with labeling
- Only previous work: Kalogerakis et al. 2010
 - Good results
 - Very slow: 8 hours to train on 6 meshes (Xeon E5355 2.66 GHz)

Introduction

- Idea: use features at level of superpixel-like patches
- Adapt method of Socher et al. 2011
 - Used for image segmentation, sentence parsing
 - RNN which learns semantic embedding
- More nebulous/more interesting goal: learn a meaningful embedding of per-superpixel features into "semantic space"
 - Investigate the structure of this space
 - Recover descriptors at all levels

Outline

- Machine learning method
- Oversegmentation
- Features (old and new)
- Segmentation results
- Applications of semantic embedding to shape understanding
- Future directions

Socher's recursive neural network for image segmentation

Semantic embedding of superpixels:

$$a_i = f(W^{sem}F_i + b^{sem})$$

Semantic embedding of patches:

Scoring the joined patches:

Labeling joined patches:

$$label_p = softmax(W^{label}p)$$

Oversegmentation

- Need to respect true segment boundaries
- Concave creases
- Edge function from Lai et al. 2009:

$$d_1(f_i, f_{i,k}) = \eta \left[1 - \cos\left(\text{dihedral}(f_i, f_{i,k})\right)\right] = \frac{\eta}{2} ||\mathbf{N}_i - \mathbf{N}_{i,k}||^2$$

$$d(f_i, f_{i,k}) = \frac{d_1(f_i, f_{i,k})}{\bar{d}_1}$$

$$p_{i,k} = |e_{i,k}| \exp \left\{-\frac{d(f_i, f_{i,k})}{\sigma}\right\}$$

Oversegmentation

- Use this function for weighted adjacency matrix
- Construct Laplacian from weighted adjacency matrix
- k-means on spectral embedding

Features

$$a_i = f(W^{sem}F_i + b^{sem})$$

Features: curvatures

Features: HKS, WKS

Features: shape diameters

Features: shape contexts

Features: average geodesic distance

(Old) segmentation results

Difficult to encode intrinsic location information

Conformal features

Steps:

1. Initial conformal mapping to sphere (Haker et al. 2000)

Bad area distortion

Conformal features

Steps:

- 1. Initial conformal mapping to sphere (Haker et al. 2000)
- 2. Minimize area distortion, as measured by

$$E_1 = \max_i |A_i - A_i'|$$

$$E_1 = \max_{i} |A_i - A_i'| \quad E_2 = \max_{i} \left| 1 - \frac{A_i'}{A_i} \right|$$

Desirable area distortion

Desirable area distortion

Conformal features

Steps:

- Initial conformal mapping to sphere (Haker et al. 2000)
- 2. Minimize area distortion, as measured by

$$E_1 = \max_{i} |A_i - A'_i| \quad \left| \quad E_2 = \max_{i} \left| 1 - \frac{A'_i}{A_i} \right| \right|$$

$$E_2 = \max_i \left| 1 - \frac{A_i'}{A_i} \right|$$

- 3. Extract and average features
 - Distance to k-th nearest neighbor
 - Mean geodesic distance to p% closest vertices
 - Mean square distance to p% closest vertices
 - Mean log(distance⁻¹) to p% closest vertices

Conformal features

Features: contextual label features

$$p_i^l = \sum_{j: d_b \le \operatorname{dist}(i,j) < d_{b+1}} a_j \cdot P(c_j = l)$$

Investigating the semantic embedding

- Trained on SCAPE dataset (72 different poses of same human)
 - Used point-to-point correspondences for defining training segmentation
- Then recovered semantic embedding of feature vectors for superpixels

$$a_i = f(W^{sem}F_i + b^{sem})$$

Ground truth

Segmentation result (does not use point correspondences)

How to join superpixels?

$$p = f(W[c_1; c_2] + b)$$

- Socher uses greedy approach to build trees
- Get degenerate tree structures which are undesirable for meshes

Semantic space PCA plots

Bottom left: semantic features at superpixel level

Top right: semantic features at segment

level

Bottom right: both in same plot

(Red = head, burnt orange = legs, purple = waist, teal-green = arms, yellow-green = torso)

Reference

Segmentation

Shape nearest neighbors: LEGS

- Reference pose shown at left
- We take the nearest/farthest neighbors of the semantic vector for reference legs

Reference

Segmentation

1st nearest neighbor

3rd nearest neighbor

2nd nearest neighbor

4th nearest neighbor

Reference

Segmentation

1st farthest neighbor

2nd farthest neighbor

3rd farthest neighbor

Shape interpolation: ARMS

Shape interpolation

Terminal

Further work/future directions

- Tuning the model, removing redundant or useless features for increased speed
- Investigating alterations to learning model/ objective function
 - Dealing with combinatorial explosion to learn correct tree structure
- Adding boundary features

Conclusions

- Segmentation
 - Shape correspondences between non-(nearly)isometric meshes (e.g., horse and cow)
- Interesting shape descriptor from semantic embedding
 - Shape understanding

Objective function:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} r_i(\theta) + \frac{\lambda}{2} ||\theta||^2, \text{ where}$$

$$r_i(\theta) = \max_{\hat{y} \in \mathcal{T}(x_i)} \left(s(\text{RNN}(\theta, x_i, \hat{y})) + \Delta(x_i, l_i, \hat{y}) \right)$$

$$- \max_{y_i \in Y(x_i, l_i)} \left(s(\text{RNN}(\theta, x_i, y_i)) \right)$$

Margin loss:

$$\Delta(x, l, \hat{y}) = \kappa \sum_{d \in N(\hat{y})} \mathbf{1} \{ subTree(d) \notin Y(x, l) \}$$