3D Shape Analysis Using Machine Learning Student: Michael Lindsey CURIS Project Guibas Lab ### Introduction - Immediate goal of project: mesh segmentation with labeling - Only previous work: Kalogerakis et al. 2010 - Good results - Very slow: 8 hours to train on 6 meshes (Xeon E5355 2.66 GHz) ### Introduction - Idea: use features at level of superpixel-like patches - Adapt method of Socher et al. 2011 - Used for image segmentation, sentence parsing - RNN which learns semantic embedding - More nebulous/more interesting goal: learn a meaningful embedding of per-superpixel features into "semantic space" - Investigate the structure of this space - Recover descriptors at all levels ### Outline - Machine learning method - Oversegmentation - Features (old and new) - Segmentation results - Applications of semantic embedding to shape understanding - Future directions #### Socher's recursive neural network for image segmentation #### Semantic embedding of superpixels: $$a_i = f(W^{sem}F_i + b^{sem})$$ #### **Semantic embedding of patches:** #### **Scoring the joined patches:** #### **Labeling joined patches:** $$label_p = softmax(W^{label}p)$$ ### Oversegmentation - Need to respect true segment boundaries - Concave creases - Edge function from Lai et al. 2009: $$d_1(f_i, f_{i,k}) = \eta \left[1 - \cos\left(\text{dihedral}(f_i, f_{i,k})\right)\right] = \frac{\eta}{2} ||\mathbf{N}_i - \mathbf{N}_{i,k}||^2$$ $$d(f_i, f_{i,k}) = \frac{d_1(f_i, f_{i,k})}{\bar{d}_1}$$ $$p_{i,k} = |e_{i,k}| \exp \left\{-\frac{d(f_i, f_{i,k})}{\sigma}\right\}$$ ### Oversegmentation - Use this function for weighted adjacency matrix - Construct Laplacian from weighted adjacency matrix - k-means on spectral embedding ### **Features** $$a_i = f(W^{sem}F_i + b^{sem})$$ ### Features: curvatures # Features: HKS, WKS # Features: shape diameters # Features: shape contexts # Features: average geodesic distance # (Old) segmentation results # Difficult to encode intrinsic location information ### Conformal features ### Steps: 1. Initial conformal mapping to sphere (Haker et al. 2000) #### **Bad area distortion** ### Conformal features ### Steps: - 1. Initial conformal mapping to sphere (Haker et al. 2000) - 2. Minimize area distortion, as measured by $$E_1 = \max_i |A_i - A_i'|$$ $$E_1 = \max_{i} |A_i - A_i'| \quad E_2 = \max_{i} \left| 1 - \frac{A_i'}{A_i} \right|$$ #### **Desirable area distortion** #### **Desirable area distortion** ### Conformal features #### Steps: - Initial conformal mapping to sphere (Haker et al. 2000) - 2. Minimize area distortion, as measured by $$E_1 = \max_{i} |A_i - A'_i| \quad \left| \quad E_2 = \max_{i} \left| 1 - \frac{A'_i}{A_i} \right| \right|$$ $$E_2 = \max_i \left| 1 - \frac{A_i'}{A_i} \right|$$ - 3. Extract and average features - Distance to k-th nearest neighbor - Mean geodesic distance to p% closest vertices - Mean square distance to p% closest vertices - Mean log(distance⁻¹) to p% closest vertices ### Conformal features ### Features: contextual label features $$p_i^l = \sum_{j: d_b \le \operatorname{dist}(i,j) < d_{b+1}} a_j \cdot P(c_j = l)$$ ### Investigating the semantic embedding - Trained on SCAPE dataset (72 different poses of same human) - Used point-to-point correspondences for defining training segmentation - Then recovered semantic embedding of feature vectors for superpixels $$a_i = f(W^{sem}F_i + b^{sem})$$ **Ground truth** Segmentation result (does not use point correspondences) ### How to join superpixels? $$p = f(W[c_1; c_2] + b)$$ - Socher uses greedy approach to build trees - Get degenerate tree structures which are undesirable for meshes #### **Semantic space PCA plots** Bottom left: semantic features at superpixel level Top right: semantic features at segment level **Bottom right: both in same plot** (Red = head, burnt orange = legs, purple = waist, teal-green = arms, yellow-green = torso) Reference Segmentation ### **Shape nearest neighbors: LEGS** - Reference pose shown at left - We take the nearest/farthest neighbors of the semantic vector for reference legs Reference Segmentation 1st nearest neighbor 3rd nearest neighbor 2nd nearest neighbor 4th nearest neighbor Reference Segmentation 1st farthest neighbor 2nd farthest neighbor 3rd farthest neighbor # Shape interpolation: ARMS # Shape interpolation **Terminal** # Further work/future directions - Tuning the model, removing redundant or useless features for increased speed - Investigating alterations to learning model/ objective function - Dealing with combinatorial explosion to learn correct tree structure - Adding boundary features ### Conclusions - Segmentation - Shape correspondences between non-(nearly)isometric meshes (e.g., horse and cow) - Interesting shape descriptor from semantic embedding - Shape understanding #### **Objective function:** $$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} r_i(\theta) + \frac{\lambda}{2} ||\theta||^2, \text{ where}$$ $$r_i(\theta) = \max_{\hat{y} \in \mathcal{T}(x_i)} \left(s(\text{RNN}(\theta, x_i, \hat{y})) + \Delta(x_i, l_i, \hat{y}) \right)$$ $$- \max_{y_i \in Y(x_i, l_i)} \left(s(\text{RNN}(\theta, x_i, y_i)) \right)$$ #### Margin loss: $$\Delta(x, l, \hat{y}) = \kappa \sum_{d \in N(\hat{y})} \mathbf{1} \{ subTree(d) \notin Y(x, l) \}$$