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Proof of the Classical Gibbs Variational Principle in
Theorem 1
For any A∈Sn , let ρ∈M, and define H (x ) := 1

2
xTAx + U (x )

and η := 1
Z [A]

e−H ∈M. Then the relative entropy of ρ with
respect to η is defined as Sη(ρ) =−

∫
ρ log ρ

η
dx . (Note the sign

convention; here, the relative entropy is the negative of the
Kullback–Leibler divergence.) For fixed η ∈M, Sη is nonposi-
tive and, moreover, Sη(ρ) = 0 if and only if ρ= η. Hence∫

H ρ dx − S(ρ) = Ω[A]− Sη(ρ) ≥ Ω[A]. [S1]

The inequality in Eq. S1 holds if and only if ρ= η. This proves
that

Ω[A] = inf
ρ∈M

[∫
H ρ dx − S(ρ)

]
,

as well as the fact that this infimum is uniquely attained at the
probability density ρ= η.

�

Proof That F Is Concave in Theorem 1
Let G1,G2 ∈Sn

++, θ∈ [0, 1], and ε > 0. Note that F can be
written

F [G] = sup
ρ∈G−1(G)

Ψ[ρ], Ψ[ρ] := S(ρ)−
∫

U ρ dx .

Furthermore let ρ1, ρ2 ∈M such that ρi ∈G−1(Gi) and Ψ[ρi ]≥
F [Gi ] − ε. Then, noting that θρ1 + (1 − θ)ρ2 ∈G−1(θG1 +
(1− θ)G2), we observe

F [θG1 + (1− θ)G2] = sup
ρ∈G−1(θG1+(1−θ)G2)

Ψ[ρ]

≥ Ψ [θρ1 + (1− θ)ρ2]

≥ θΨ[ρ1] + (1− θ)Ψ[ρ2]

≥ θF [G1] + (1− θ)F [G2]− ε,
where the penultimate step uses convexity of Ψ. Since ε was arbi-
trary, we have established concavity.

�

Proof That F Diverges to−∞ at the Boundary of Sn
++ in

Theorem 1
Recall that F is defined by

F [G] = sup
ρ∈G−1(G)

[
S(ρ)−

∫
U ρ dx

]
.

Now for ρ∈G−1(G), the entropy of ρ is bounded above by
the entropy of the Gaussian distribution N (0,G); i.e., S(ρ)≤
1
2

log((2πe)n detG). Furthermore, since U satisfies the strong
growth condition, U is in particular bounded below; i.e., U (x )≥
C for some constant C and all x ∈Rn . Therefore, for any
ρ∈G−1(G), we have

S(ρ)−
∫

U ρ dx ≤ 1

2
log((2πe)n detG)− C

=
1

2
log detG + C ′,

where C ′ is a new constant. This implies thatF [G]≤ 1
2

log detG+
C ′, and in particular F diverges to −∞ at the boundary of Sn

++.
�

Proof of the Transformation Rule (Proposition 4)
Let G ∈Sn

++. Using Tr[log(G)] = log det(G), we have

Φ[G;U ] = −Φ0 − 2 inf
ρ∈G−1(G)[∫ (

log
[
(detG)1/2ρ

]
+ U

)
ρ dx

]
.

Then for T invertible, we have

Φ[TGT ∗;U ] = −Φ0 − 2 inf
ρ∈G−1(TGT∗)[∫ (

log
[
(detG)1/2 · | detT | · ρ

]
U
)
ρ dx

]
.

Now observe by changing variables that{
ρ : ρ ∈ G−1(TGT ∗)

}
=
{
| detT |−1 · ρ ◦ T−1 : ρ ∈ G−1(G)

}
.

Therefore,

Φ[TGT ∗;U ] = −Φ0 − 2 inf
ρ∈G−1(G)[

|detT |−1

∫ (
log
[
(detG)1/2·ρ ◦ T−1

]
+U

)
ρ ◦ T−1 dx

]
= −Φ0 − 2 inf

ρ∈G−1(G)[∫ (
log
[
(detG)1/2 · ρ

]
+ U ◦ T

)
ρ dx

]
= Φ[G;U ◦ T ],

as was to be shown.
�

Sketch of the Proof of the Continuous Extension of the LW
Functional in Theorem 2
Suppose G ∈Sn

+ is of the form

G =

(
Gp 0
0 0

)
,

where Gp ∈Sp
++, and suppose that G(j) ∈Sn

++ with G(j)→G

as j →∞. For each j , diagonalize G(j) =
∑n

i=1 λ
(j)
i v

(j)
i

(
v
(j)
i

)T
,

where the v
(j)
i are orthonormal, λ(j)

i > 0 for i = 1, . . . ,n .
We want to show that

Φn [G(j),U ]→ Φp [Gp ,U ( · , 0)].

It suffices to show that every subsequence has a convergent sub-
sequence with its limit being Φp [Gp ,U ( · , 0)]. The G(j) are con-
vergent and hence bounded (in the ‖ · ‖2 norm), so the λ(j)

i are
bounded. Moreover, the v

(j)
i are all of unit length and hence

bounded, so by passing to a subsequence if necessary we can
assume that, for each i , there exist λi , vi such that λ(j)

i →λi and
v
(j)
i → vi as j →∞. It follows that the vi are orthonormal and

that G can be diagonalized as G =
∑n

i=1 λiviv
T
i . Since Gp is

positive definite, we must have λi > 0 for i = 1, . . . , p, and more-
over λi = 0 for i = p + 1, . . . ,n . Evidently, the eigenvectors of
G with strictly positive eigenvalues must be precisely the eigen-
vectors of Gp , concatenated with n − p zero entries; i.e., for
i = 1, . . . , p, vi must be of the form (∗, 0). By orthogonality, for
i = p + 1, . . . ,n , vi must be of the form (0, ∗).

Lin and Lindsey www.pnas.org/cgi/content/short/1720782115 1 of 3

http://www.pnas.org/cgi/content/short/1720782115


Via the transformation rule (Proposition 4), by choosing a suit-
able sequence of orthogonal transformations T (j)→ In , we can
redefine G(j) :=

∑n
i=1 λ

(j)
i viv

T
i and instead show that

Φn [G(j),U (j)]→ Φp [Gp ,U ( · , 0)],

where U (j) :=U ◦ T (j). Observe that G(j) can be written in the
form

G(j) =

(
G

(j)
1 0

0 G
(j)
2

)
,

where G
(j)
1 → Gp and G

(j)
2 → 0 as j →∞.

Before proceeding, we establish some notational conven-
tions. We will use coordinates x = (y , z ) to denote the splitting
Rn =Rp × Rn−p , and for any density ρ we define marginals
ρ1(y) =

∫
ρ(y , z ) dz , ρ2(z ) =

∫
ρ(y , z ) dy .

Now recall that
1

2
Φn [G(j),U (j)] = sup

ρ∈G−1
n (G(j))

[
H (ρ)−

∫
U (j) ρ dx

]
−1

2
log
(

(2πe)n detG(j)
)
.

Intuitively, as j →∞, any density ρ∈G−1
n (G(j)) concentrates

more and more about the subspace span{e1, . . . , ep}. Also,
U (j)→U in a pointwise sense. Therefore, heuristically, we
expect to be able to replace

∫
U (j) ρ dx with

∫
U ( · , 0) ρ1 dy in

the limit j →∞.
Moreover, for any ρ, we have that H (ρ)≤H (ρ1) + H (ρ2),

with equality if and only if ρ(y , z ) = ρ1(y)ρ2(z ). (For given
marginals, the entropy of a distribution is maximized if it is
a product of its marginals.) Since Gn−p(ρ2) =G

(j)
2 , and the

entropy among measures of a given covariance is maximized by
the Gaussian measure of that covariance, it follows that H (ρ2)≤
1
2

log
(

(2πe)n−p detG
(j)
2

)
, with equality if and only if ρ2 is the

mean-zero Gaussian density with covariance G
(j)
2 .

Now for j large, we have Gp(ρ1) ≈ Gp for any ρ ∈ G−1
n (G(j)).

Due to the fact that detG(j) = detG
(j)
1 detG

(j)
2 , we then expect

lim sup
j→∞

Φn [G(j),U (j)] ≤ sup
ρ1∈G−1

p (Gp)

[
H (ρ1)−

∫
U (·, 0) ρ1 dy

]
−1

2
log ((2πe)p detGp);

i.e.,

lim sup
j→∞

Φn [G(j),U (j)] ≤ Φp [Gp ,U ( · , 0)].

For an idea of the proof of the opposite bound, note that each
of our inequalities in the preceding argument can be made to
hold with equality by specifically choosing ρ∈G−1

n (G(j)) to be
a product density with arbitrary first marginal ρ1 and second
marginal ρ2 given by the mean-zero Gaussian density with covari-
ance G

(j)
2 .

�

Proof of Lemma 5
Write

1

2
xTAx + U (x ) =

1

2
xT
(
A− Σ(ε) + Σ

(N )
(ε)
)
x + U (N )

ε (x )

=
1

2
xT
(
G−1 + Σ

(N )
(ε)
)
x + U (N )

ε (x ).

It follows that under the interaction U
(N )
ε , the noninteracting

Green’s function G−1 + Σ
(N )

(ε) corresponds to the interacting

Green’s function G . This establishes that

A[G;U (N )
ε ] = G−1 + Σ

(N )
(ε).

Moreover, by the Dyson equation we have that

Σ[G;U (N )
ε ] = A[G;U (N )

ε ]−G−1 = Σ
(N )

(ε),

as desired.
�

Proof of the Resummation Step in Theorem 3
Note that the sum up to the finite order N of the Feynman dia-
grams for the Green’s function [with bare propagator G

(N )
0 (ε)

and interaction εU ] coincides with G̃(N )(ε) and hence also with
G , up to negligible error. Then we may use the standard com-
binatorial argument (1, 2) that the bold diagram expansion for
the self-energy up to order N accounts for all bare diagrams up
to order N . It follows that Σ̃(N )(ε)—and hence also Σ

(N )
(ε)—

is, up to negligible error, given by the bold diagram expansion
up to order N with bold propagator G and interaction εU . But
since this expansion and Σ

(N )
(ε) are both polynomials of order

N in ε, it follows that Σ
(N )

(ε) is exactly given by the bold diagram
expansion up to order N , as was to be shown.

�

Proof of the Expansion Coefficients of the LW Functional in
Theorem 3
By the transformation rule (and the fact that U is quartic), we
have

Φ[tG, εU ] = Φ[G, t2εU ]

for any G ∈ Sn
++ and ε, t > 0. Taking the gradient in G of both

sides yields

Σ[tG, εU ] =
1

t
Σ[G, t2εU ].

Then compute

Φ[G, εU ] =

∫ 1

0

d

dt
Φ[tG, εU ] dt

=

∫ 1

0

Tr[GΣ[tG, εU ]] dt

=

∫ 1

0

1

t
Tr[GΣ[G, t2εU ]] dt

=

∫ 1

0

1

t

[
N∑

k=1

Tr
[
GΣ

(k)
G

]
t2kεk

+O
(
t2(N+1)εN+1

)]
dt

=

∫ 1

0

[
N∑

k=1

Tr
[
GΣ

(k)
G

]
t2k−1εk

+O
(
t2N+1εN+1

)]
dt .

Now since t ranges from 0 to 1 in the integrand, we have that
t2N+1εN+1 ≤ εN+1, and therefore

Φ[G; εU ] =

∫ 1

0

[
N∑

k=1

Tr
[
GΣ

(k)
G

]
t2k−1εk

]
dt + O(εN+1)

=
N∑

k=1

1

2k
Tr
[
GΣ

(k)
G

]
εk + O(εN+1).
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This establishes that

Φ
(k)
G =

1

2k
Tr
[
GΣ

(k)
G

]
,

as was to be shown.
We remark that this proof bears resemblance to the adiabatic

integration technique that formally defines the LW functional (2,

3). The significant difference lies in the fact that in our case, the
adiabatic integration technique is used to establish the relation
of the coefficients for the LW functional that we have already
defined. Moreover, unlike the diagrammatic constructions of the
LW functional, our argument does not make use of any particu-
lar properties of the bold diagrams, relying instead on the trans-
formation rule.

�
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