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OPTIMAL TRANSPORT VIA A MONGE–AMPÈRE
OPTIMIZATION PROBLEM∗

MICHAEL LINDSEY† AND YANIR A. RUBINSTEIN‡

Abstract. We rephrase Monge’s optimal transportation (OT) problem with quadratic cost—
via a Monge–Ampère equation—as an infinite-dimensional optimization problem, which is in fact a
convex problem when the target is a log-concave measure with convex support. We define a natural
finite-dimensional discretization to the problem and associate a piecewise affine convex function
to the solution of this discrete problem. The discrete problems always admit a solution, which
can be obtained by standard convex optimization algorithms whenever the target is a log-concave
measure with convex support. We show that under suitable regularity conditions the convex functions
retrieved from the discrete problems converge to the convex solution of the original OT problem
furnished by Brenier’s theorem. We demonstrate numerical solutions of these discrete problems and
then explain (at the expense of provable convergence) how to modify our method to make it more
efficient and more accurate, as well as how to remove the restriction on the target measure via a
fixed point method that only involves solving OT problems with constant target densities.
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1. Introduction. In this article we develop schemes for the numerical solution
of the the Monge–Ampère equation governing optimal transport on Rn. Our main
theorem provides natural and computationally feasible approximations of optimal
transportation (OT) maps as well as of their Brenier convex potential, in the case of
quadratic cost.

To achieve this we rephrase Monge’s problem as an infinite-dimensional opti-
mization problem, which is, in fact, a convex problem when the target is a measure
with convex support whose density g is such that g−1/n is convex. Note that this
class of measures includes all log-concave measures with convex support. We define
a natural finite-dimensional discretization to the problem and associate a piecewise
affine convex function to the solution of this discrete problem. The discrete problems
always admit a solution, which can be obtained by standard convex optimization al-
gorithms whenever the target is a measure with convex support whose density g is
such that g−1/n is convex. We show that under suitable regularity conditions the
convex functions retrieved from the discrete problems converge to the convex solution
of the original OT problem furnished by Brenier’s theorem. While this result yields
new insights into optimal transport maps, it also has applications to the numerical
solution of OT problems. We illustrate the method treated by our convergence theo-
rem with a number of numerical examples, before turning to some more heuristically
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justified modifications of the basic method that enhance its efficiency and accuracy
and remove the aforementioned restriction on the target density. We explore these
modifications numerically.

1.1. Yet another formulation of Monge’s problem. Let Ω and Λ be
bounded open sets in Rn with Λ convex, and let f and g be positive functions on
Ω and Λ, respectively, each bounded away from zero and infinity. For simplicity,
assume that f and g are in C0,α(Ω) and C0,α(Λ), respectively, and that they define
positive measures µ and ν on Ω and Λ, respectively, by

µ = f dx, ν = g dx,

where dx denotes the Lebesgue measure on Rn, and assume that

(1)
∫

Ω
f dx =

∫
Λ
g dx.

Then by results by Brenier and Caffarelli [8, 9, 40], there exists a unique solution of
the corresponding Monge problem for the quadratic cost, i.e.,

minimize
{T :Ω→Λ :T#µ=ν}

∫
Ω
|T (x)− x|2 dµ(x),

and, moreover, T is in C1,α(Ω). Further, the solution is given by T = ∇ϕ for ϕ convex
and C2,α(Ω). In addition, ϕ is the unique (up to an additive constant) Brenier (and,
hence, also Alexandrov, or viscosity) solution of the second boundary value problem
for the Monge–Ampère equation

(2)
det
(
∇2ϕ(x)

)
=

f(x)
g (∇ϕ(x))

, x ∈ Ω,

∂ϕ(Ω) ⊂ Λ,

where ∂ϕ denotes the subdifferential map associated to the convex function ϕ.
The following result rephrases Monge’s problem as an infinite-dimensional opti-

mization problem. This problem can be considered “convex” whenever, in particular,
the target measure has log-concave (e.g., uniform) density with convex support. We
refer the reader to section 2 for more details and intuition on, as well as a proof of,
the result. Section 2 can be read independently of all other sections.

Proposition 1.1. With notation and hypotheses as in the above discussion, ϕ
is the unique (up to addition by a constant) solution of the following optimization
problems:

minimize
ψ∈J

F(ψ) :=
∫

Ω
G(ψ, x)dx,

where
J := {ψ ∈ C2(Ω) : ψ convex, and ∇ψ(Ω) ⊆ Λ}

and

G(ψ, x) := max
{

0,−
(

det
(
∇2ψ(x)

) )1/n
+
(
f(x)/g (∇ψ(x))

)1/n
}
.

Remark 1.2. By “ψ convex” we mean that ψ extends to convex function on all of
Rn.

The previous result, while not difficult to prove, provides the key starting point
for our discretization, which we now discuss.
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1.2. A discrete Monge–Ampère optimization problem. Let

x1, . . . , xN ∈ Ω

be points, and let
S1, . . . , SM ⊂ Ω

be n-dimensional simplices whose set of vertices equals {xj}Nj=1 that together form
an almost-triangulation of Ω. By this we mean that the intersection of any two of
the Si is either empty or a common face (of any dimension) and that Ω\

⋃M
i=1 Si has

“small” volume. Note that the triangulation can be made perfect if Ω is a polytope.
We denote the vertices of the simplex Si by

xi0 , . . . , xin , i0, . . . , in ∈ {1, . . . , N},

so that Si = co{xi0 , . . . , xin}, where

coA

denotes the convex hull of a set A. We denote by

η1, . . . , ηN ∈ Λ

points in the closure of the target domain Λ, and we think of ηj as the “image” of xj ,
so that intuitively Si gets mapped to co{ηi0 , . . . , ηin}. We associate to the discrete
map xj 7→ ηj and the almost-triangulation {Si}Mi=1 a sort of discrete Jacobian defined
separately for each simplex. To define this, let Ai, and Bi be n-by-n matrices defined
by

(3)
Ai :=

[
(xi1 − xi0) (xi2 − xi0) · · · (xin − xi0)

]T
,

Bi :=
[

(ηi1 − ηi0) (ηi2 − ηi0) · · · (ηin − ηi0)
]T

(here, xj and ηj are represented by column vectors). The discrete Jacobian associated
to the simplex Si is then the n-by-n matrix

(4) Hi := H
(
Si, ηi0 , . . . , ηin

)
:=

1
2

(Ai)
−1
Bi +

1
2

(
(Ai)

−1
Bi

)T
.

Roughly speaking, Hi is a finite difference approximation to the Jacobian of the
transport map on simplex i, whose determinant measures the change in volume under
the map. This would indeed be the exact Jacobian of the piecewise-linear map that
interpolates xj 7→ ηj , but, as we shall see, we must demand symmetry in order to
allow Hi to lie in the positive semidefinite cone, so it is really the symmetrization of
this exact Jacobian.

Finally, denote the volume of the ith simplex by

(5) Vi := vol(Si).

We now introduce a discrete analogue of the first optimization problem associated to
the Monge–Ampère equation (2) introduced in Proposition 1.1.
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Definition 1.3. The discrete Monge–Ampère optimization problem (DMAOP)
associated to the data (Ω,Λ, f, g, {xj}Nj=1, {Si}Mi=1) is as follows:

minimize
{ψi∈R,ηi∈Rn}Ni=1

M∑
i=1

Vi ·max
{

0,−(detHi)1/n +
(
f
(∑n

j=0 xij
n+1

)
/g
(∑n

j=0 ηij
n+1

))1/n
}

subject to ψj ≥ ψi + 〈ηi, xj − xi〉 , i, j = 1, . . . , N,(6)
ηi ∈ Λ, i = 1, . . . , N,(7)
Hi ≥ 0, i = 1, . . . ,M.(8)

To ease the notation in the following, we define
(9)

Fi

({
ψ

(k)
j , η

(k)
j

}N(k)
j=1

)
:= max

{
0,−(detHi)1/n +

(
f
(∑n

j=0 xij
n+1

)
/g
(∑n

j=0 ηij
n+1

))1/n
}

and

(10) F
({
ψ

(k)
j , η

(k)
j

}N(k)
j=1

)
:=

M(k)∑
i=1

Vi · Fi
({
ψ

(k)
j , η

(k)
j

}N(k)
j=1

)
,

so Fi is a per-simplex penalty, and F is the objective function of the DMAOP.
The variables of the DMAOP are ψ1, . . . , ψN and η1, . . . , ηN (while x1, . . . , xN ,Ω,

Λ, f, g are given). These variables are the discrete analogues of the values of the
convex potential and its gradient, respectively, at the points x1, . . . , xN , while Hi is
the discrete analogue of the Jacobian, on the simplex Si, of the map xi 7→ ηi. One
can think of detHi as a measure of the volume distortion of simplex Si under the
map.

We will see later (see Proposition 3.1(i)) that the DMAOP is feasible (i.e., there
exists a point in the variable space (ψ1, . . . , ψN , η1, . . . , ηN ) ∈ (R × Rn)N satisfying
the constraints (6)–(8)) for a fine enough triangulation. We will argue now that if
the problem is feasible, then it admits an optimizer. First note that the satisfaction
of the constraints and the value of the objective function are unaffected by shifting
all of the ψi by the same constant. Thus it is equivalent to considering the DMAOP
with the additional constraint that ψ1 = 0. Note that the ηi are bounded over the
optimization domain (since Λ is bounded), and consequently, with the additional
constraint included, the ψi are bounded over the optimization domain by (6). Thus
the optimization domain is compact, and the problem must admit a minimizer. In the
case that Λ is convex and g−1/n is convex, the DMAOP is in fact a convex optimization
problem (see Remark 2.2), so (see, for instance, [7, Chapter 11]), we expect that the
DMAOP can be solved efficiently.

1.3. Convex functions associated to the solution of the DMAOP. Next,
we construct a piecewise linear convex function φ associated with a solution {ψj , ηj}Nj=1
of the DMAOP. Define

(11) aj(x) := ψj + 〈ηj , x− xj〉, j = 1, . . . , N,

so aj is the (unique) affine function with aj(xj) = ψj and ∇aj(xj) = ηj . Define the
optimization potential by

(12) φ(x) := b+ max
j=1,...N

aj(x),
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where b ∈ R is chosen such that φ(0) = 0 (and we have assumed, without loss of
generality, that 0 ∈ Ω). Notice that we have defined φ on all of Rn. As the supremum
of affine functions, φ is convex. The point is that φ still encodes the solution of the
DMAOP. Indeed, by the constraints of the DMAOP (specifically (6)),

(13) φ(xj) = ψj + b

and

(14) ηj ∈ ∂φ(xj)

(as aj is an affine function with slope ηj lying below φ but touching it at xj).

1.4. Relationship of the DMAOP with discrete optimal transport. We
briefly describe a connection between the DMAOP and classical discrete optimal
transport problems (DOTPs). In fact, the solution of the DMAOP gives the solution
to a corresponding DOTP.

Let {ψj , ηj}Nj=1 ∈ (R × Rn)N be a solution of the DMAOP (with notation as
above). The construction of section 1.3 yields, by (13)–(14), a piecewise-linear convex
function φ : Rn → R such that φ(xj) = ψj and ∂φ(xj) 3 ηj . By Rockafellar’s
theorem [33, Theorem 24.8], the set

⋃N
j=1(xj , ηj) ⊂ R2n is cyclically monotone (see

[33, section 24] for definitions) since it is a subset of the graph of the subdifferential
of the convex function φ. Thus, xj 7→ ηj solves the optimal transport problem from
µD =

∑N
j=1 δxj to νD =

∑N
j=1 δηj [39], where δp denotes the Dirac delta measure

concentrated at p. We state this result as a proposition.

Proposition 1.4. Let {ψj , ηj}Nj=1 be a solution of the DMAOP. Then T : {xj} →
{ηj} given by xj 7→ ηj solves the Monge problem with source µD =

∑N
j=1 δxj and target

νD =
∑N
j=1 δηj .

Of course, the target points ηj are not fixed before the optimization problem is
solved. The DMAOP chooses target points ηj in a way that attempts to achieve
correct volume distortion.

1.5. Convergence of the discrete solutions. Now, we take a sequence of
almost-triangulations {xi}N(k)

i=1 , {S(k)
i }

M(k)
i=1 indexed by k (so now both N and M are

functions of k, although we will usually omit that dependence from our notation)
satisfying the following assumptions. Denote by diamA the diameter of a set A in
Euclidean space.

Definition 1.5. We say that the sequence of almost-triangulations {{S(k)
i }

M(k)
i=1 }k∈N

is admissible if

lim
k→∞

max
i∈{1,...,M(k)}

diamS
(k)
i = 0,

and there are open sets Ωε ⊂ Ω indexed by ε > 0, with

Ωε ⊂ Ωε′ for ε′ ≤ ε

and ⋃
ε>0

Ωε = Ω,
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and such that for any ε > 0 sufficiently small, we have that an ε-neighborhood of Ωε
is contained within the kth almost-triangulation for all k sufficiently large, i.e.,

Ωε +Bε(0) ⊂
M(k)⋃
i=1

S
(k)
i ∀k � 1.

Given an admissible sequence of almost-triangulations, we construct the optimiza-
tion potentials

(15) φ(k) ∈ C0,1(Rn), k ∈ N,

associated with the solution
{
ψ

(k)
j , η

(k)
j

}N(k)
j=1 of the kth DMAOP, by the prescription

of the previous subsection (specifically, by (12)). Our main theorem concerns the
convergence of the optimization potentials to the Brenier potential, i.e., to the solution
of the PDE (2).

Theorem 1.6. Let f ∈ C0(Ω), g ∈ C0(Λ), and suppose that Λ is convex. Let
{{S(k)

i }
M(k)
i=1 }k∈N be an admissible sequence of almost-triangulations (recall Defini-

tion 1.5). Suppose that the optimal cost of the kth DMAOP tends to zero as k →∞.
Then, as k → ∞, the optimization potentials φ(k) (15) converge uniformly on Ω to
the unique Brenier solution ϕ of the Monge–Ampère equation (2) with ϕ(0) = 0.

Remark 1.7. For the proof of Theorem 1.6, we do not actually need φ(k) to be the
optimization potential retrieved from the optimal solution of the kth DMAOP. We
only need that the φ(k) are defined via (11) and (12) by some {ψ(k)

j , η
(k)
j }Nj=1 which

satisfy the constraints of Definition 1.3 and for which the cost of Definition 1.3 tends
to zero as k →∞. See section 1.6 for implications.

The assumption on the optimal cost holds in many interesting cases by assuming
a mild regularity condition on the almost-triangulations.

Definition 1.8. We say that a sequence
{
{Si}M(k)

i=1

}
k∈N of almost-triangulations

of Ω is regular if there exists R > 0 such that

det
(
u

(k)
i,1 u

(k)
i,2 · · · u

(k)
i,n

)
≥ R ∀i ∈ {1, . . . ,M(k)}, ∀k ∈ N,

where
u

(k)
i,j := ‖xij − xi0‖−1 (xij − xi0) .

For example, in dimension n = 2, a sequence of almost-triangulations is regular if
the angles of the triangles are bounded below uniformly in k. We remark that similar
restrictions appear in the finite element method literature.

Based on Theorem 1.6 we prove the following general convergence result that
does not make any assumptions on the optimal cost of the discretized problems. The
convergence we obtain on the level of subdifferentials can be viewed as optimal since
φ(k) are Lipschitz but no better, i.e., φ(k) 6∈ C1.

Theorem 1.9. Let f ∈ C0,α(Ω), g ∈ C0,α(Λ), and suppose that Λ is convex.
Let

{
{S(k)

i }
M(k)
i=1

}
k∈N be an admissible and regular sequence of almost-triangulations

(recall Definitions 1.5 and 1.8). Let ϕ be the the unique Brenier solution of the Monge–
Ampère equation (2) with ϕ(0) = 0, and let φ(k) be the optimization potentials (15)
obtained from the DMAOP. Then

φ(k) → ϕ uniformly on Ω,
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and ∂φ(k) → ∇ϕ pointwise on Ω. In particular, ∇φ(k) converges pointwise almost
everywhere to the optimal transport map pushing forward µ = f dx to ν = g dx.

Proof. Under the assumption that the sequence of almost-triangulations is admis-
sible and regular and that ϕ ∈ C2(Ω), Corollary 5.5 states that ck, the optimal cost
of the kth DMAOP, tends to zero as k → ∞. Thus, Theorem 1.6 implies φ(k) con-
verges uniformly to the Brenier solution ϕ. We will see from the proof of Theorem 1.6
that we can in fact assume that the φ(k) are uniformly convergent on a closed ball D
containing Ω in its interior. The convergence of subgradients then follows from Theo-
rem 4.7 since if a sequence of lower semicontinuous finite convex functions converges
uniformly on bounded sets to some convex function, then the sequence epi-converges
to this function [34, Theorem 7.17].

Remark 1.10. The conditions of admissibility and regularity on the sequence of
triangulations are necessary for technical reasons, but they are fulfilled easily in prac-
tice.

Remark 1.11. We see from the statement of Theorem 1.6 that, in practice, even
in situations in which we cannot guarantee convergence, we can acquire good heuristic
evidence in favor of convergence if the optimal cost of the kth DMAOP becomes small
as k → ∞. However, it remains an open problem to prove the error estimates that
would make this insight rigorous.

Remark 1.12. Although, via Corollary 5.5, we do not require regularity up to the
boundary to obtain convergence in the DMAOP case, it can be seen that the proof of
Corollary 5.5 does not yield a rate for the convergence ck → 0. To prove such a rate,
we need f ∈ C0,α(Ω), g ∈ C0,α(Λ), and ϕ ∈ C2,α(Ω), since in this case it follows from
the proof of Corollary 3.3 that ck = O(hα), where h = h(k) is the maximal simplex
diameter in the kth triangulation. Note that a bound on ck does not imply an error
bound for the optimization potentials, though it suggests a candidate.

1.6. Contributions of this work. We outline here the theoretical and numer-
ical contributions of this work. First, we have introduced an infinite-dimensional op-
timization problem equivalent to the Monge–Ampère equation for optimal transport,
and we have identified natural discretizations of this problem for which convergence
can be established. It is perhaps most appropriate to think of the convergence result
(Theorem 1.6) as a convergence result for convex functions. We interpret the theo-
rem as stating that a sort of one-sided convergence (over an increasingly fine set of
discretization points) of the discrete Hessian determinants of a sequence of convex
functions to the “right-hand side” of a Monge–Ampère equation implies convergence
of the convex functions themselves to the solution of the Monge–Ampère equation, as
long as the gradients are confined within the target region. We can interpret this as
a coercivity-type result allowing us to pass from vanishing violation (even one-sided)
of the Monge–Ampère equation to vanishing deviation from the solution.

Furthermore, in establishing Theorem 1.6, we develop a perspective on the nu-
merical analysis of the peculiar boundary condition of (2) that we do not think has
been explored in the literature. We also comment that our method treats the bound-
ary condition of (2) in a new way that is simple both in theory and in numerical
implementation, relying only on the enforcement of a convex constraint.

Though the practical applicability of our method is a priori limited to target
densities g such that g−1/n is convex, we have introduced (in section 8) a fixed point
iteration that at least heuristically reduces the solution of an OT problem to the
solution of a sequence of OT problems with uniform target density, extending the
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applicability of our method to a wider class of problems. This iteration could be of
use in other methods.

Numerically, we illustrate the features of the DMAOP before introducing (in
section 7) a more efficient and accurate method, the revised DMAOP, or RDMAOP.
In particular, the RDMAOP achieves second-order accuracy in some settings.

Lastly, we remark that the ideas of this work (specifically, regarding the optimiza-
tion approach) have applicability more generally to the numerical analysis of nonlinear
elliptic PDEs (including other Monge–Ampère equations), and we are actively pursu-
ing applications of these ideas.

1.7. Review of existing methods. Our work relies on a (convex) optimization
approach. In this subsection we review other, different, approaches to discretizing the
OT problem and, sometimes, more generally the Monge–Ampère equation or even
more general fully nonlinear second-order elliptic PDEs. Recently, the literature on
numerical methods for Monge–Ampère equations in general, and for optimal trans-
port maps in particular, has grown considerably. Therefore, we do not attempt a
comprehensive review of existing methods in the literature, but rather concentrate
on briefly mentioning those approaches for which both a numerical algorithm has
been implemented and a convergence result has been proven. For a thorough survey
of existing numerical methods, we refer the interested reader to the article of Feng,
Glowinski, and Neilan [14] and references therein.

Oliker and Prussner [28] and Baldes and Wohlrab [3] initiated the study of dis-
cretizations of the 2-dimensional Monge–Ampère equation and obtained a convergence
theorem for the Dirichlet problem for the equation uxxuyy − u2

xy = f on a bounded
domain in R2. This used, among other things, classical constructions of Minkowski
[24] and Pogorelov [31].

Benamou and Brenier [4] introduced, on the other hand, a discretization scheme
for the dynamic formulation of the optimal transport problem that does not involve
the Monge–Ampère equation. This involves solving the system of equations for ρ :
[0, T ]× Rn → R+, v : [0, T ]× Rn → Rn,

(16)
∂tρ+ div(ρv) = 0,

∂tφ+ |∇xφ|2/2 = 0,

with the constraint v = ∇xφ and the boundary conditions ρ(0, · ) = f , ρ(T, · ) =
g. The authors use discretization in space-time that falls within the framework of
problems in numerical fluid mechanics. See also the work of Angenent, Haker, and
Tannenbaum [1] and Haber, Rehman, and Tannenbaum [18]. More recently, Guittet
proved that the Benamou–Brenier scheme converges when the target is convex and
the densities are smooth [17].

Recently, Benamou, Froese, and Oberman proposed a convergence proof via a
direct discretization of the Monge–Ampère equation [5, 6]. Other recent work includes,
e.g., Loeper and Rapetti [21], Sulman, Williams, and Russell [38], Kitagawa [19], and
Papadakis, Peyré, and Oudet [29].

Another approach one could pursue is to approximate the measures by empirical
measures (sums of Dirac measures). In the simplest case, when the number of Dirac
measures is the same for the source and the target, the solution is given by solving
the assignment problem that has efficient numerical implementations. We refer the
reader to Mérigot and Oudet [23] and [29, p. 213] for relevant references (cf. [10] for
an implementation in some simple cases). It is interesting to note that the method
presented in this article a fortiori solves an assignment problem, but for target Dirac
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measures whose location is not a priori known (as explained in section 1.4 above).
We also point out semidiscrete methods such as Lévy [20]; cf. Example 1.6 of Gangbo
and McCann [16].

We also note recent methods based on the linear programming (Kantorovich)
formulation of optimal transport that maintain efficiency by exploiting sparsity, in
particular those of Schmitzer [37] and Oberman and Ruan [27].

Lastly, we mention the approach of Cuturi [13] to numerical OT via entropic
regularization that aims to solve a regularized problem.

2. The Monge–Ampère optimization problem. We recall some of the no-
tation from section 1.1. Let Ω and Λ be bounded open sets in Rn with 0 ∈ Ω and Λ
convex. Let f ∈ C0,α(Ω) and g ∈ C0,α(Λ) be positive functions bounded away from
zero and infinity satisfying (1). Let ϕ ∈ C2,α(Ω) be the unique convex solution of (2)
with ϕ(0) = 0.

Proposition 1.1 is a special case of the following result.

Lemma 2.1. With notation and hypotheses as in the above paragraph, ϕ is the
unique solution of the following optimization problem:

minimize
ψ∈Cvx(Ω)∩C2(Ω)

F(ψ) :=
∫

Ω
h ◦ G(ψ, x) · ρ(x)dx

subject to ∇ψ(Ω) ⊆ Λ,

where

G(ψ, x) := max
{

0,−
(

det
(
∇2ψ(x)

) )1/n +
(
f(x)/g (∇ψ(x))

)1/n
}
,

and h : [0,∞)→ R is convex and increasing with h(0) = 0, and ρ is a positive function
on Ω, bounded away from zero and infinity.

Before giving the proof we make several remarks.

Remark 2.2. Notice that if g−1/n is convex, this optimization problem can be
thought of as an “infinite-dimensional convex optimization problem” (where the value
of ψ at each point x is an optimization variable). To see that the problem can indeed
be thought of as “convex,” notice/recall that

• ∇ψ(x) and ∇2ψ(x) are linear in ψ;
• det 1/n is concave on the set of positive semidefinite (symmetric) matrices;
• the pointwise maximum of two convex functions is convex;
• the composition of a convex increasing function with a convex function is

convex;
• the set of convex functions is a convex cone;
• the specification that ∇ψ(Ω) ⊆ Λ is a convex constraint since Λ is convex.

These points also demonstrate that the discretized version of the problem (i.e., the
DMAOP) outlined above is a convex problem in the usual sense.

We comment that g−1/n is convex whenever g is log-concave. Indeed, this can
be seen by writing g−1/n = exp

(
− 1
n log g

)
and recalling that exp preserves convexity.

Thus the DMAOP is a convex problem for a strictly larger class of target measures.

Remark 2.3. Nevertheless, for the proof of the main theorems we do not require
g−1/n to be convex (nor that g be log-concave), though these assumptions ensure that
the DMAOP is convex and, thus, feasibly solvable.
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Remark 2.4 (intuitive explanation of Lemma 2.1). We can think of the objective
function in the statement of the lemma as penalizing excessive contraction of volume
by the map ∇ψ (relative to the “desired” distortion given by the ratio of f and g),
while ignoring excessive expansion. However, since we constrain ∇ψ to map Ω into Λ,
we expect that excessive expansion at any point will result in excessive contraction at
another, causing the value of the objective function to be positive. Thus we expect
that the optimal ψ must in fact be ϕ.

Remark 2.5. One could alternatively consider a functional G̃ defined by

G̃(ψ, x) := max
{

0,− log det
(
∇2ψ(x)

)
+ log

(
f(x)/g (∇ψ(x))

)}
in place of G in the above. Since log det is concave on the set of positive definite
matrices, the resulting problem (along with its discretization) is still convex as long
as g is log-concave. All of the analysis of this paper, except for section 5, carries
over via natural modifications to this alternative problem. More precisely, difficulties
arise in section 5 because, unlike the nth root, the logarithm is unbounded for positive
numbers near zero. Nevertheless, by making the stronger assumption that the Brenier
potential ϕ is in C2,α(Ω) these difficulties are overcome and one obtains a convergence
proof (we refer the interested reader to an earlier posted version of this article for
details).

Proof. Note that F (ϕ) = 0, since ϕ solves the Monge–Ampère equation, and that
F (ψ) ≥ 0 always. Thus letting ψ be such that F (ψ) = 0, it only remains to show
that ψ = ϕ. For a contradiction, suppose that ψ 6= ϕ. Since ϕ is the unique solution
to the Monge–Ampère equation above, there exists some x0 ∈ Ω such that

det
(
∇2ψ(x0)

)
6= f(x0)
g (∇ψ(x0))

.

If we have that the left-hand side is less than the right-hand side in the above, then
G(ψ, x0) > 0, so by continuity G(ψ, x) > 0 for x in a neighborhood of x0, and
F (ψ) > 0. Thus we can assume that in fact

det
(
∇2ψ(x)

)
≥ f(x)
g (∇ψ(x))

for all x, with strict inequality at a point x0. By continuity, we must also have strict
inequality on an entire neighborhood of x0. In addition, we have that det

(
∇2ψ(x)

)
is bounded away from zero, so ψ is strongly convex. Thus ∇ψ is injective, and we
obtain by a change of variables∫

∇ψ(Ω)
g(y)dy =

∫
Ω
g (∇ψ(x)) det

(
∇2ψ(x)

)
dx

>

∫
Ω
f(x)dx.

Of course, since ∇ψ(Ω) ⊆ Λ, we have in addition that
∫

Λ g(y)dy ≥
∫
∇ψ(Ω) g(y)dy. We

have arrived at a contradiction because
∫

Λ g =
∫

Ω f by (1).

3. Convergence of solutions of the DMAOP. In the following we will often
consider sequences of DMAOPs indexed by k. We will maintain the notation from
section 1.5, adding “(k)” in superscripts as necessary.
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3.1. The objective function. First, we would like to understand the behavior
of the objective function of the DMAOP. The following proposition gives a criterion
guaranteeing the optimal cost (i.e., the minimum of the objective function) of the
DMAOP converges to zero. The idea is to study the cost associated to the restriction
of the solution ϕ of the Monge–Ampère equation to the kth almost-triangulations,
i.e., to estimate the cost

(17) dk := F
({
ϕ(x(k)

j ),∇ϕ(x(k)
j )
}N(k)
j=1

)
associated to

(18)
{
ϕ(x(k)

j ),∇ϕ(x(k)
j )
}N(k)
j=1 ∈ (R× Rn)N(k).

A small caveat, of course, is to show first that these data actually satisfy the con-
straints of the discrete Monge–Ampère optimization problem (DMAOP) and, subse-
quently, that the kth DMAOP is feasible. This is the content of part (i) of the next
proposition.

Proposition 3.1. Let
{
{S(k)

i }
M(k)
i=1

}
k∈N be a sequence of admissible and regular

almost-triangulations of Ω (recall Definitions 1.5 and 1.8). Let ϕ be the unique Brenier
solution of the Monge–Ampère equation (2) with ϕ(0) = 0, and suppose that ϕ ∈
C2,α(Ω). Then

(i) the data (18) satisfies the constraints (6)–(8) for all k sufficiently large;
(ii) limk dk = 0.

Remark 3.2. Due to the additional regularity assumption on ϕ, i.e., that ϕ ∈
C2,α(Ω), Proposition 3.1 is not sufficient to establish that Theorem 1.9 follows from
Theorem 1.6 (cf. Remark 2.5). We will show later (in section 5) that we can relax the
regularity assumption to ϕ ∈ C2(Ω), in particular requiring no regularity up to the
boundary. These details are more technical and have been postponed for expository
clarity. However, we comment at this point that the regularity condition ϕ ∈ C2(Ω)
follows from the assumptions of Theorem 1.9. In fact (recalling our initial assumption
that f and g are in C0,α(Ω) and C0,α(Λ), respectively), if Ω and Λ are uniformly
convex and of class C2, then we actually do have the regularity ϕ ∈ C2,α(Ω) needed
for Proposition 3.1 to apply. For a review of the relevant regularity theory, see [39,
Chapter 4].

Denote by

(19)
{
ψ

(k)
j , η

(k)
j

}N
j=1
∈ (R× Rn)N(k)

the solution to the kth DMAOP. The optimal (minimal) cost of the DMAOP associ-
ated with the kth almost-triangulation is then

(20) ck := F
({
ψ

(k)
j , η

(k)
j

}N(k)
i=1

)
.

Since ck ≤ dk, an immediate consequence of Proposition 3.1 is the following.

Corollary 3.3. Under the assumptions of Proposition 3.1, limk ck = 0.

This statement is analogous to consistency statements for more typical finite
difference schemes.
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Proof of Proposition 3.1. (i) We claim that the feasibility conditions (6)–(8) are
satisfied for

{
ϕ(x(k)

j ),∇ϕ(x(k)
j )
}N(k)
j=1 for all k sufficiently large. First, the convexity

of ϕ implies (6). Second, (7) follows from (2). It remains to check (8). This follows
immediately from the strong convexity of ϕ ∈ C2,α(Ω) (recall (2) and the fact that f, g
are positive), together with the following lemma. Given a matrix C = [cij ], denote

||C|| = max
i,j
|cij |.

Lemma 3.4. Let
{
{S(k)

i }
M(k)
i=1

}
k∈N be a sequence of admissible and regular almost-

triangulations of Ω. Then (recall (4))

lim
k

max
i∈{1,...,M(k)}

∥∥∥H(S(k)
i ,

{
∇ϕ(x(k)

i0
), . . . ,∇ϕ(x(k)

in
)
})
−∇2ϕ(x(k)

i0
)
∥∥∥ = 0.

Proof. First, let
h = h(k) := max

i∈{1,...,M(k)}
diamS

(k)
i .

By Definition 1.5,

(21) lim
k
h = 0.

Fix some i ∈ {1, . . . ,M(k)}. Then, with Ai and Bi defined as in Definition 1.3
(though now dependent on k, although we omit that from the notation), notice that
the (j, l)th entry of Ai∇2ϕ (xi0) is

(
xij − xi0

)T (∇∂lϕ (xi0)), which is of course equal
to Dvj (∂lϕ) (xi0) , where Dv denotes the directional derivative in the direction v and
where

vj := xij − xi0 , j = 1, . . . , n.

Now ηij = ∇ϕ
(
xij
)
, so ηij − ηi0 = ∇ϕ

(
xij
)
−∇ϕ (xi0), i.e., the (j, l)th entry of Bi

is ∂lϕ
(
xij
)
− ∂lϕ (xi0).

Next, set

ζ := ∂lϕ, x := xi0 , y := xij , τj := ‖vj‖ = ‖x− y‖, uj := τ−1
j vj .

Note that uj is of unit length and that Dvj (∂lϕ) (xi0) = τjDujζ(x). We have∣∣∣[Bi]jl − [Ai∇2ϕ (xi0)
]
jl

∣∣∣ =
∣∣ζ(y)− ζ(x)− τjDujζ(x)

∣∣
=
∣∣∣∣∫ τj

0
Dujζ

(
(τj − t)x+ ty

τj

)
dt− τjDujζ(x)

∣∣∣∣
=
∣∣∣∣∫ τj

0

[
Dujζ

(
(τj − t)x+ ty

τj

)
−Dujζ(x)

]
dt

∣∣∣∣
≤
∫ τj

0

∣∣∣∣Dujζ

(
(τj − t)x+ ty

τj

)
−Dujζ(x)

∣∣∣∣ dt
≤
∫ τj

0
C1

∥∥∥∥( (τj − t)x+ ty

τj

)
− x
∥∥∥∥α dt

= C1

∫ τj

0
tα dt = Cτα+1

j ,
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where C1 = ||ϕ||C2,α(Ω) and C = C1/(1 + α). Now, write

Ai = DU,

where
D := diag(τ1, . . . , τn).

Thus, the rows of U have unit length. By our last inequality,∣∣∣[D−1Bi
]
jl
−
[
D−1Ai∇2ϕ (xi0)

]
jl

∣∣∣ =
∣∣∣τ−1
j [Bi]jl − τ

−1
j

[
Ai∇2ϕ (xi0)

]
jl

∣∣∣ ≤ Cταj ≤ Chα,
where C is independent of k, i, j, and l.

Now U−1 = 1
detU

(
(−1)j+lMjl

)T , where Mjl is the (j, l)th minor of U . Since the
rows of U are unit vectors, |Ujl| ≤ 1. Since Mjl is a polynomial of (n − 1)! terms in
the Ujl, we have that |Mjl| ≤ (n − 1)! for all j, l, and hence

∣∣[U−1
]
jl

∣∣ ≤ (n−1)!
detU . By

Definition 1.8, detU is bounded below by a constant R > 0 (independent of k and i),
so we have that

∣∣[U−1
]
jl

∣∣ ≤ R′ for R′ = R−1(n − 1)! > 0 (independent of k and i).
Then it follows that∣∣∣[U−1D−1Bi

]
jl
−
[
U−1D−1Ai∇2ϕ (xi0)

]
jl

∣∣∣ =
∣∣∣[U−1 (D−1Bi −D−1Ai∇2ϕ (xi0)

)]
jl

∣∣∣
≤ nR′Chα,

Of course, since Ai = DU , this means precisely that

max
i=1,...,M(k)

∥∥A−1
i Bi −∇2ϕ (xi0)

∥∥ ≤ C ′hα
for some C ′ > 0 independent of k and i. Since ∇2ϕ (xi0) is symmetric,

max
i=1,...,M(k)

∥∥A−1
i Bi −∇2ϕ (xi0)

∥∥ = max
i=1,...,M(k)

∥∥∥(A−1
i Bi

)T −∇2ϕ (xi0)
∥∥∥ .

Thus,

max
i

∥∥∥∥1
2
A−1
i Bi +

1
2
(
A−1
i Bi

)T −∇2ϕ (xi0)
∥∥∥∥ ≤ max

i

∥∥∥∥1
2
A−1
i Bi −

1
2
∇2ϕ (xi0)

∥∥∥∥
+ max

i

∥∥∥∥1
2
(
A−1
i Bi

)T − 1
2
∇2ϕ (xi0)

∥∥∥∥
= max

i

∥∥A−1
i Bi −∇2ϕ (xi0)

∥∥ ≤ C ′hα,
which, by (21), concludes the proof of Lemma 3.4.

Remark 3.5. It is tempting to rephrase the regularity assumption (Definition 1.8)
in terms of eigenvalues instead of determinant; however, the matrices U and A−1B
are not symmetric in general, and so the more involved argument we used seems to
be necessary to prove Lemma 3.4.

(ii) Given that the feasibility conditions (6)–(8) hold, dk is well-defined. The rest
of the proof is devoted to showing that dk converges to zero.

Let

y
(k)
i :=

1
n+ 1

n∑
j=0

x
(k)
ij
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denote the barycenter of Si. Since f is uniformly continuous on Ω,

(22) max
i=1,...,M(k)

|f(x(k)
i0

)− f(y(k)
i )| → 0.

Let z(k)
i denote the barycenter of the simplex formed by the gradients at the vertices

of the ith simplex, i.e.,

z
(k)
i :=

1
n+ 1

n∑
j=0

∇ϕ(x(k)
ij

).

Then similarly, since g is uniformly continuous on Λ and ∇ϕ is Lipschitz,

(23) max
i=1,...,M(k)

|g(∇ϕ(x(k)
i0

))− g(z(k)
i )| → 0,

Since f, g are bounded away from zero and infinity on Ω, it follows from (22) and (23)
that

(24) max
i

∣∣∣∣[f(y(k)
i )/g(z(k)

i )
]1/n

−
[
f(x(k)

i0
)/g(∇ϕ(x(k)

i0
))
]1/n∣∣∣∣→ 0.

By (2),

(25) det∇2ϕ(x(k)
i0

) =
f(x(k)

i0
)

g(∇ϕ(x(k)
i0

))
.

Then, by (17), (9), and (10), we have

(vol(Ω))−1dk

≤ max
i

∣∣∣ det 1/nH
(
S

(k)
i ,

{
∇ϕ(x(k)

i0
), . . . ,∇ϕ(x(k)

in
)
})
−
[
f(y(k)

i )/g(z(k)
i )
]1/n ∣∣∣

≤ max
i

∣∣∣ det 1/nH
(
S

(k)
i ,

{
∇ϕ(x(k)

i0
), . . . ,∇ϕ(x(k)

in
)
})
−
[
f(x(k)

i0
)/g(∇ϕ(x(k)

i0
))
]1/n ∣∣∣

+ max
i

∣∣∣∣[f(y(k)
i )/g(z(k)

i )
]1/n

−
[
f(x(k)

i0
)/g(∇ϕ(x(k)

i0
))
]1/n∣∣∣∣ .

In the last expression, the last term tends to zero with k by (24). Meanwhile, the
first term tends to zero with k by Lemma 3.4 and (25) (note here that since ∇2ϕ(Ω)
is compact and entirely contained in the set of positive definite matrices,

detH
(
S

(k)
i ,

{
∇ϕ(x(k)

i0
), . . . ,∇ϕ(x(k)

in
)
})

is bounded away from zero for all k � 1 by Lemma 3.4).

4. Proof of the convergence theorem. We now turn to the proof of Theo-
rem 1.6, stating that the potentials φ(k) (15) converge to the Brenier potential ϕ. This
section is organized as follows. In sections 4.1–4.2 we define the barycentric extension
of the gradient of the optimization potentials and show how this relates to the discrete
Jacobian on each simplex (Lemma 4.1). This sets the stage for the remainder of the
proof, which occupies the rest of this lengthy section. In section 4.3 we describe the
strategy for the proof. The proof itself occupies sections 4.4–4.10.
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Let D be a closed ball such that

(26) intD ⊃ Ω,

where intA denotes the interior of a set A. By the Arzelà–Ascoli theorem, since
{φ(k)}k is an equicontinuous, uniformly bounded family (recall (11)–(12) and note
that η(k)

j ∈ Λ for all k, j, with Λ bounded, and φ(k)(0) = 0), it has a uniformly
converging subsequence. Thus, to prove Theorem 1.6 it suffices to show that every
subsequence of φ(k) that converges uniformly on D converges to ϕ on Ω.

Thus, assume that

(27) φ(k) → φ uniformly on D

for some φ, and we need only show that φ = ϕ on Ω. Notice that φ is convex and
continuous as a uniform limit of continuous uniformly bounded convex functions.

4.1. Barycentric extension of the gradient of the optimization poten-
tials. The objective function of the DMAOP provides us with some sort of control
over the second-order properties of the φ(k), but these properties are neither well-
defined at this stage nor readily accessible because the φ(k) are piecewise linear, and
so only C0,1 and no better. In order to get a handle on the second-order convergence
of the φ(k), we will replace the piecewise constant but discontinuous subdifferentials
of φ(k) with continuous, piecewise-affine functions that interpolate rather than jump,
which we may then differentiate once again.

For the remainder of the article, let

(28) ψ
(k)
1 , . . . , ψ

(k)
N(k) ∈ R and η

(k)
1 , . . . , η

(k)
N(k) ∈ Λ ⊂ Rn

denote the solution of the kth DMAOP (Definition 1.3) associated to the data

(Ω,Λ, f, g, {x(k)
j }

N(k)
j=1 , {S

(k)
i }

M(k)
i=1 ).

Thus, with (14) in mind, we define a vector-valued function G(k) by barycentrically
interpolating the values {η(k)

ij
}nj=1 over the ith simplex S

(k)
i for all i = 1, . . . ,M(k).

Namely, for each x in
S

(k)
i = co(x(k)

i0
, . . . , x

(k)
in

)

write

(29) x =
n∑
j=0

σjx
(k)
ij
,

with σj ∈ [0, 1]. Then

(30) G(k)(x) :=
n∑
j=0

σjη
(k)
ij

if x ∈ S(k)
i

(note that this is well-defined also for x lying in more than one simplex). Alternatively,
G(k) is the unique vector-valued function that is affine on each simplex in the kth
almost-triangulation and satisfies G(k)(x(k)

i ) = η
(k)
i for all i = 1, . . . , N(k).
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4.2. The motivation for defining the barycentric extension. Next, we
explain the main role the functions G(k) play.

Let

(31) i(k) :
M(k)⋃
i=1

intS(k)
i → {1, . . . ,M(k)}

denote the map assigning to a point the index of the unique simplex in the kth
almost-triangulation containing it, i.e., i(k)

(
intS(k)

j

)
= j. Define a (locally constant)

matrix-valued function

H(k) :
M(k)⋃
i=1

intS(k)
i → Sym2(Rn)

by

(32) H(k)(x) := H
(k)
i(k)(x),

where (recall (4))

H
(k)
j := H

(
S

(k)
j ,

{
η

(k)
j0
, . . . , η

(k)
jn

})
.

Define also

(33) τ (k)(x) := the barycenter of the simplex S(k)
i(k)(x)

and

(34) γ(k)(x) := the mean of the η(k)
j associated to the vertices of simplex S(k)

i(k)(x).

Finally, recalling (9), we define a (locally constant) per-simplex penalty function

(35) C(k)(x) := F
(k)
i(k)(x)

({
ψ

(k)
j , η

(k)
j

}N(k)
i=1

)
.

By (9),

(36) C(k)(x) = max
{

0,−det 1/n
[
H(k)(x)

]
+ f1/n(τ (k)(x)) · g−1/n(γ(k)(x))

}
,

By the definition of the optimal cost (20),
(37)

ck =
∫

⋃M(k)
i=1 Si

C(k)(x) dx

=
∫

⋃M(k)
i=1 Si

max
{

0,−det 1/n
[
H(k)(x)

]
+ f1/n(τ (k)(x)) · g−1/n(γ(k)(x))

}
dx.

The following result is the motivation for introducing the functions G(k). When
combined with (37), it relates second-order information that we can extract from
φ(k) (via G(k)) with the cost ck, over which we have control by the assumptions of
Theorem 1.6. In fact, we have ck → 0, so we can hope that in some sense, as k
becomes large, φ(k) approaches a subsolution of the Monge-Ampère equation.
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Lemma 4.1. For x ∈
⋃
i intS(k)

i , H(k)(x) = ∇G(k)(x) +
(
∇G(k)(x)

)T
.

Proof. We fix some k and then omit k from our notation in the remainder of the
proof. We also fix i ∈ {1, . . . ,M(k)} and work within the simplex Si, i.e., assume
that x ∈ Si, i.e., i(k)(x) = i. Now let vj = xij − xi0 . We claim that

DvjG(x) = ηij − ηi0 , x ∈ intSi.

Intuitively, this is because g is affine on Si with G
(
xij
)

= ηij . For the proof, recall
the definition of the functions σj from (29). Then, letting δst = 1 if s = t and zero
otherwise,

DvjG(x) =
d

dt

∣∣∣
t=0

G
(
x+ t(xij − xi0)

)
=

n∑
s=0

d

dt

∣∣∣
t=0

σs
(
x+ t(xij − xi0)

)
ηis

=
n∑
s=0

d

dt

∣∣∣
t=0

(
σs(x) + t(δjs − δ0s)

)
ηis

= ηij − ηi0 ,

as claimed.
Now DvjG = vj · ∇G, so DvjG is the jth row of Ai∇G, where ∇G denotes the

matrix with jth row ∂
∂xj

G and where Ai is as in (3). Since DvjG = ηij − ηi0 is also
the jth row of Bi, we have that Bi = Ai∇G, i.e., ∇G = A−1

i Bi. The statement now
follows from the definition of Hi (4).

4.3. Strategy for the proof. In this subsection we outline the strategy for the
proof of Theorem 1.6.

The results of the previous subsection indicate that the optimization potentials
should be approximate subsolutions of the Monge–Ampère equation. Since the opti-
mization potentials converge to φ, this gives some hope that φ itself might be such
a subsolution. To make this rigorous we regularize. Let ξε be a standard set of
mollifiers (supported on Bε(0)). Notice that G(k) and H(k) are only defined on the
almost-triangulation of Ω, so we run into trouble near the boundary when convolving
with ξε. Thus, we will work with the regions Ωε given by Definition 1.5.

Lemma 4.2. Fix ε > 0. As k →∞, H(k) ?ξε(x) converges uniformly to ∇2(φ?ξε)
on Ωε.

The proof of Lemma 4.2 takes place in section 4.5. Lemma 4.2 gives us control
over the second-order behavior of φ?ξε. The proof uses an auxiliary result established
in section 4.4 that gives control over the first-order behavior of φ ? ξε.

The next step of the proof involves taking the limits in k both in the previous
lemma and in (37). Thanks to the fact that ck → 0, this yields the following state-
ment roughly saying that φ ? ξε is an approximate subsolution to the Monge–Ampère
equation, i.e., that ∇(φ ? ξε) cannot “excessively” shrink volume.

Lemma 4.3. Fix ε > 0. For x ∈ Ωε,

det∇2(φ ? ξε)(x) ≥ inf{f(y) : y ∈ Bε(x)}
sup{g (∇φ(y)) : y ∈ Bε(x),∇φ(y) exists}

.

The proof of Lemma 4.3 is presented in section 4.6.
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The next step in the proof is to take the limit ε→ 0 and show that φ must be a
weak solution in the sense that ∇φ pushes forward µ to ν. The proof of this fact is
broken up into several steps in sections 4.7–4.8. First, we define the measures

(38) νε := (∇φ ? ξε)#µ|Ωε

obtained by pushing forward the restriction of µ to Ωε by ∇φ?ξε. Denote the density
of these measures by

(39) gε dx := νε.

Using Lemma 4.3, we show that a subsequence of these measures (roughly speaking)
converges weakly to the target measure ν. Intuitively speaking, Lemma 4.3 says that
∇φ ? ξε does not shrink volume “excessively” at any point. Combining this with the
fact that the image of ∇φ ? ξε must lie within Λ motivates the convergence. The
precise result we prove is the following.

Proposition 4.4. For any sequence ε→ 0, µ(Ωε)−1νε is a sequence of probability
measures converging weakly to ν(Λ)−1ν.

The proof of Proposition 4.4 is given in section 4.8 based on some auxiliary results
proven in section 4.7.

The last step of the proof of Theorem 1.6 is to show that any uniform limit of the
optimization potentials coincides with the Brenier potential ϕ.

Lemma 4.5. Let φ(k) be defined by (15) and suppose that φ(k) converges uniformly
to some φ. Then φ = ϕ.

The proof of Lemma 4.5 is presented in section 4.9. It hinges on Proposition 4.4,
stability results for optimal transport maps (proved in section 4.10), and all of the
previous steps in the proof.

Remark 4.6. Though it seems natural that the stability of optimal transport plays
a role in this proof, it is perhaps unexpected that we have employed the stability of
optimal transport to obtain convergence in ε (rather than in k). As mentioned earlier,
we could not take the seemingly more direct route and needed to use mollifiers to
obtain regularity.

4.4. First-order control on φ. We want to show that G(k) approaches ∂φ in
some sense. We make use of the following semicontinuity result of Bagh and Wets [2,
Theorem 8.3] (cf. [33, Theorem 24.5]). Recall that fk epi-converges to f (roughly) if
the epigraphs of fk converge to the epigraph of f ; we refer the reader to [34, p. 240]
for more precise details.

Theorem 4.7. Let f and {fk}k∈N be lower semicontinuous convex functions with
fk epi-converging to f . Fix x ∈ int dom f and ε > 0. Then there exist δ > 0 and
K ∈ N such that

∂fk(y) ⊂ ∂f(x) +Bε(0) ∀y ∈ Bδ(x), ∀k ≥ K.

Moreover, if f is differentiable at x, then

(40) lim
k→∞

∂fk(x) = {∇f(x)}.

Lemma 4.8. As k tends to infinity, G(k) converges to ∇φ almost everywhere on
Ω.
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Proof. If a sequence of lower semicontinuous finite convex functions converges
uniformly on bounded sets to some convex function, then the sequence epi-converges
to this function [34, Theorem 7.17]. Thus, we may apply Theorem 4.7 to φ(k). Fix
x ∈ Ω and ε > 0. There exists a δ > 0 and K ∈ N such that

∂φ(k)(y) ⊂ ∂φ(x) +Bε(0) ∀y ∈ Bδ(x), ∀k ≥ K.

Fix ε > 0 and a point x ∈ Ω where φ is differentiable. Additionally, take δ > 0 and
K according to the aforementioned result. If necessary, take K even larger, so that
for all k ≥ K the maximal distance of x to the vertices of the simplices containing it
is at most δ. We assume from now on that k ≥ K. Thus for all vertices x(k)

j of any
simplex containing x, we have that

∂φ(k)(x(k)
j ) ⊂ ∇φ(x) +Bε(0).

By (14), η(k)
ij
∈ ∂φ(k)(x(k)

ij
). On the other hand, by (30), G(k)(x) is a convex combina-

tion of the η(k)
ij

. Thus, G(k)(x) ∈ ∇φ(x) +Bε(0). This proves that G(k) → ∇φ almost
everywhere since φ is differentiable almost everywhere.

4.5. Second-order control on φ and a proof of Lemma 4.2. Unfortunately,
we do not have enough regularity to maintain that ∇G(k) approaches ∇2φ almost
everywhere. We can obtain this regularity by convolving everything with a sequence
of mollifiers.

The motivation for doing so is fairly intuitive. Strictly speaking, the second-
order behavior of the φ(k) is completely trivial. The second derivatives of the φ(k)

are everywhere either zero or undefined. However, by virtue of solving the DMAOP,
the φ(k) do actually contain second-order information in some sense. Indeed, we may
think of the graphs of the φ(k) as having some sort of curvature that becomes apparent
when we “blur” φ(k) on a small scale and then take k large enough so that the scale
of the discretization is much smaller than the scale of the blurring. This blurring is
achieved by convolving with smooth mollifiers.

Let ξε be a standard set of mollifiers (supported on Bε(0)). Notice that G(k)

is only defined on the almost-triangulation of Ω, so we run into trouble near the
boundary when convolving with ξε. Thus, we will work with the regions Ωε given by
Definition 1.5.

The following lemma is the main result of this subsection.

Lemma 4.9. Fix ε > 0. On Ωε, ∇G(k) ? ξε converges uniformly to ∇2(φ ? ξε) (in
each of the n2 components).

Lemma 4.9 immediately implies Lemma 4.2, thanks to Lemma 4.1 and sym-
metrization (noting the symmetry of ∇2(φ ? ξε)).

We start with three auxiliary results. The first states that differentiation and
convolution commute when the functions involved are uniformly Lipschitz. We leave
the standard proof to the reader. Note that ∇φ?ξε := (∇φ)?ξε is everywhere defined
because ∇φ exists almost everywhere.

Claim 4.10. For all ε > 0, ∇φ ? ξε = ∇(φ ? ξε) and ∇G(k) ? ξε = ∇(G(k) ? ξε).

The second is a mollified version of Lemma 4.8.

Claim 4.11. Fix ε > 0. For x ∈ Ωε, G(k) ? ξε converges uniformly to ∇φ ? ξε (in
each of the n components).
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Proof. First, we claim pointwise convergence, i.e., that

(41) lim
k→∞

G(k) ? ξε(x) = ∇φ ? ξε(x) for each x ∈ Ωε.

To check that this is true, note that for x ∈ Ωε,∣∣∣G(k) ? ξε(x)−∇φ ? ξε(x)
∣∣∣ =

∣∣∣ ∫ (G(k)(y)−∇φ(y)
)
ξε(y − x) dy

∣∣∣
≤
∫ ∣∣G(k)(y)−∇φ(y)

∣∣ξε(y − x) dy

(once again note that these integrals make sense since ∇φ exists almost everywhere).
Since |G(k)(y)−∇φ(y)| → 0 almost everywhere by Lemma 4.8, while |ξε| ≤ C and the
G(k) are uniformly bounded, equation (41) follows from bounded convergence (note
that ε is constant in this limit).

Next, notice that the G(k) are uniformly bounded independently of k, in fact
(since we may assume, without loss of generality, that 0 ∈ Λ),

(42) |G(k)| ≤ diam Λ

by (30). Write

(43) G(k) = (G(k)
1 , . . . , G(k)

n ).

Thus, G(k)
i ? ξε, i = 1, . . . , n, are uniformly bounded independently of k,

|∇(G(k)
i ? ξε)| = |G(k)

i ?∇ξε(x)|

=
∣∣∣ ∫ G

(k)
i (y)∇ξε(x− y) dy

∣∣∣
≤ diam Λ

∣∣∣ ∫ ∇ξε(x− y) dy
∣∣∣ ≤ C,

with C = C(Λ, ε). Thus, the G(k) ? ξε have uniformly bounded derivatives (in each
component). The statement of the claim now follows from Remark 4.12 below.

Remark 4.12. We will use the following fact more than once. If a uniformly
bounded sequence of differentiable functions {fk}k∈N with uniformly bounded (first)
derivatives on compact sets satisfies fk → f pointwise, then fk → f uniformly on
compact sets. (This can be established easily using the Arzelà–Ascoli theorem.)

The third auxiliary result is a one-variable interpolation-type result.

Claim 4.13. Let I ⊂ R be a closed interval, and let {fk}k∈N, f : I → R be
smooth functions such that (i) fk → f uniformly, (ii) the f ′′k are uniformly bounded
independently of k, and (iii) f ′′ is bounded. Then f ′k → f ′ uniformly.

Proof. We make use of the Landau–Kolmogorov inequality

(44) ‖g′‖∞ ≤ C‖g‖1/2∞ ‖g′′‖1/2∞

for g ∈ C2(I) (see, e.g., [12]). Apply (44) to g = fk − f to obtain ‖f ′k − f ′‖∞ ≤
C‖fk − f‖1/2∞ ‖f ′′k − f ′′‖

1/2
∞ . Since f ′′ is bounded and the f ′′k are uniformly bounded,

we have that ‖f ′′k − f ′′‖
1
2∞ is uniformly bounded in k. Of course, ‖fk − f‖∞ → 0 by

uniform convergence. Therefore, ‖f ′k − f ′‖∞ → 0, as desired.
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Proof of Lemma 4.9. The functions (recall (43))

∂2
j (G(k)

i ? ξε) = G
(k)
i ? ∂2

j ξε, i, j ∈ {1, . . . , n},

are uniformly bounded independently of k by a constant depending on ε (by the
uniform boundedness of G(k)

i —recall (42)). By Claim 4.10, ∇φ ? ξε = ∇(φ ? ξε), so
also ∇(∇φ ? ξε) = ∇2(φ ? ξε). Thus, since φ ? ξε is smooth, ∇(∇φ ? ξε) is bounded in
all of its n2 components.

Let x ∈ Ωε. Then fix i, j and let δ > 0 be small enough such that I := {x+ tej :
t ∈ [−δ, δ]} ⊂ Ωε. By Claim 4.11, G(k)

i ?ξε → ∂iφ?ξε uniformly. Restricting ourselves
to the jth variable and applying Claim 4.13,

∂j(G
(k)
i ? ξε)→ ∂j(∂iφ ? ξε)

uniformly on I 3 x. Since x, i, and j were arbitrary, we see that

∇(G(k) ? ξε)→ ∇(∇φ ? ξε)

pointwise (though we cannot yet say that this convergence is uniform). The uniformity
of the convergence now follows from Remark 4.12. Finally, invoking Claim 4.10 implies
the statement of Lemma 4.9.

4.6. Obtaining a density inequality for φ?ξε and a proof of Lemma 4.3.
In this subsection we prove Lemma 4.3.

First, we prove a mollified version of (37).

Lemma 4.14. Fix ε > 0. For k sufficiently large,∫
Ωε

max
{

0,−det 1/n(H(k) ? ξε
)

+
(
f ◦ τ (k)

g ◦ γ(k)

)1/n

? ξε

}
≤ ck,

where ck is the optimal cost defined in (20), and τ (k) and γ(k) are defined in (33)–(34).

Proof. Note that max(0, ·) is convex, so applying Jensen’s inequality to (36) yields

C(k) ? ξε = max
{

0,−det 1/nH(k) + (f1/n ◦ τ (k)) · (g−1/n ◦ γ(k))
}
? ξε

≥ max
{

0,
[
− det 1/nH(k) + (f1/n ◦ τ (k)) · (g−1/n ◦ γ(k))

]
? ξε

}
= max

{
0,
[
− det 1/nH(k)] ? ξε +

(
f ◦ τ (k)

g ◦ γ(k)

)1/n

? ξε

}
.

Now by the convexity of −det 1/n(·) on the set of positive semidefinite matrices and
Jensen’s inequality once again, we have[

− det 1/nH(k)] ? ξε ≥ −det 1/n(H(k) ? ξε
)
,

and combining the last two inequalities yields

(45) C(k) ? ξε ≥ max
{

0,−det 1/n(H(k) ? ξε
)

+
(
f ◦ τ (k)

g ◦ γ(k)

)1/n

? ξε

}
.

Recall from Definition 1.5 that

Ωε +Bε(0) ⊂
M(k)⋃
i=1

S
(k)
i ∀k � 1.
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Thus for such k sufficiently large, noting that C(k) ≥ 0, we have∫
Ωε
C(k) ? ξε =

∫
Ωε

∫
Bε(0)

C(k)(x− y)ξε(y) dy dx

=
∫
Bε(0)

ξε(y)
∫

Ωε
C(k)(x− y) dx dy

≤
∫
Bε(0)

ξε(y)
∫

⋃M(k)
i=1 S

(k)
i

C(k)(x) dx dy

= ck,

where the last line follows from (37). Combining with (45) completes the proof.

At least intuitively, in order to prove Lemma 4.3 we need to “take the limit as
k → ∞” in Lemma 4.14, so that we can employ Lemma 4.2. The main technical
obstacle in taking the limit in k is controlling the behavior of τ (k) and γ(k); the proof
relies on tools from convex analysis.

Remark 4.15. Notice that in the case that f and g are uniform densities on Ω
and Λ, respectively, the proof of Lemma 4.3 is almost trivial. Even in the case that
only g is uniform, the proof is still considerably easier. This is true because the most
difficult part of the proof is controlling the behavior of γ(k), which requires results
from convex analysis, most crucially a result on the “locally uniform” convergence of
the subdifferentials of a sequence of convergent convex functions.

Proof of Lemma 4.3. Let α, β > 0 and fix x ∈ Ωε. Using Theorem 4.7, for every
z ∈ Bα(x), there exists δ(z) > 0 and Nβ(z) such that

(46) ∂φ(k)(y) ⊂ ∂φ(z) +Bβ(0) ∀y ∈ Bδ(z)(z), ∀k ≥ Nβ(z).

By compactness, there exist z1, . . . , zp ∈ Bα(x) such that the Bδ(zi) cover Bα(x).
Setting

N ′x,α,β := max
i∈{1,...,p}

Nβ(zi),

we thus have that

(47) ∂φ(k)(y) ⊂
⋃

z∈Bα(x)

∂φ(z) +Bβ(0) ∀k ≥ N ′x,α,β , ∀y ∈ Bα(x).

For k sufficiently large, i.e.,
k ≥ Nα

for some Nα depending only on α, we have that

(48) the simplex i(k)(x) (recall (31)) containing x is contained in Bα(x)

by the admissibility of our sequence of almost-triangulations (Definition 1.5); in par-
ticular

τ (k)(x) ∈ Bα(x).

Statement (48) also implies, by (14), that γ(k)(x) is a convex combination of n + 1
elements of

⋃
y∈Bα(x) ∂φ

(k)(y), so by (47),

γ(k)(x) ∈ co
( ⋃
z∈Bα(x)

∂φ(z) +Bβ(0)
)
∀k ≥ Nx,α,β ,
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where
Nx,α,β := max{Nα, N ′x,α,β}.

Thus for k ≥ Nx,α,β ,

(49)
f1/n(τ (k)(x))
g1/n(γ(k)(x))

≥ min{f1/n(y) : y ∈ Bα(x)}

max
{
g1/n(z) : z ∈ co

(⋃
z∈Bα(x) ∂φ(z) +Bβ(0)

)} .
For almost every x ∈ Ωε we have that for any γ > 0 there exists

C(x, γ) > 0

such that [33, Corollary 24.5.1]

∂φ(z) ⊂ ∇φ(x) +Bγ(0) = Bγ(∇φ(x)) ∀z ∈ Bα(x), ∀α ∈ (0, C).

Hence, for α ∈ (0, C), ⋃
z∈Bα(x)

∂φ(z) +Bβ(0) ⊂ Bγ+β(∇φ(x)),

implying that

(50) co
( ⋃
z∈Bα(x)

∂φ(z) +Bβ(0)
)
⊂ Bγ+β(∇φ(x)).

Therefore for a.e. x and any α, β, γ > 0 with α ∈ (0, C(x, γ)) we have by (49) and
(50) that

f1/n(τ (k)(x))
g1/n(γ(k)(x))

≥ min{f1/n(y) : y ∈ Bα(x)}
max

{
g1/n(z) : z ∈ Bγ+β(∇φ(x))

} for k ≥ Nx,α,β .

It follows that

(51) lim inf
k→∞

f1/n(τ (k)(x))
g1/n(γ(k)(x))

≥ min{f1/n(y) : y ∈ Bα(x)}
max

{
g1/n(z) : z ∈ Bγ+β(∇φ(x))

}
for a.e. x and any α, β, γ > 0 with α ∈ (0, C(x, γ)). By the continuity of f and g,

(52) lim
α→0

min{f1/n(y) : y ∈ Bα(x)} = f1/n(x),

and for a.e. x also

(53) lim
(β,γ)→0

max
{
g1/n(z) : z ∈ Bγ+β(∇φ(x))

}
= g1/n(∇φ(x)).

Taking limits in (51) (first α→ 0, followed by (β, γ)→ 0) and applying (52) and (53),

(54) lim inf
k→∞

(
f(τ (k)(x))
g(γ(k)(x))

)1/n

≥
(

f(x)
g(∇φ(x))

)1/n

for a.e. x.
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Next we observe that mollification preserves this inequality in the following sense:

lim inf
k→∞

[(
f ◦ τ (k)

g ◦ γ(k)

)1/n

? ξε

]
(x) = lim inf

k→∞

∫
ξε(x− y) ·

(
f(τ (k)(y))
g(γ(k)(y))

)1/n

dy

≥
∫
ξε(x− y) · lim inf

k→∞

(
f(τ (k)(y))
g(γ(k)(y))

)1/n

dy

≥
∫
ξε(x− y) ·

(
f(y)

g(∇φ(y))

)1/n

dy

=

[(
f

g ◦ ∇φ

)1/n

? ξε

]
(x),(55)

where we have used the Fatou–Lebesgue theorem (applicable since the sequence of
integrands is dominated by an integrable function; indeed, the domain is bounded
and, as f and g are bounded away from zero, the integrands are uniformly bounded)
to pass the lim inf within the integral and (54) in the penultimate step. Note that
(55) makes sense since ∇φ exists almost everywhere.

Now, take a lim inf in Lemma 4.14 and use the fact that ck → 0, along with (55),
to see that

0 = lim inf
k→∞

ck ≥ lim inf
k→∞

∫
Ωε

max
{

0,− det 1/n(H(k) ? ξε
)

+
(
f ◦ τ (k)

g ◦ γ(k)

)1/n

? ξε

}
≥
∫

Ωε
lim inf
k→∞

max
{

0,− det 1/n(H(k) ? ξε
)

+
(
f ◦ τ (k)

g ◦ γ(k)

)1/n

? ξε

}
≥
∫

Ωε
max

{
0,− lim sup

k→∞
det 1/n(H(k) ? ξε

)
+
(

f

g ◦ ∇φ

)1/n

? ξε

}
.(56)

Note that we have passed the lim inf inside of the integral using Fatou’s lemma (ap-
plicable since the integrands are nonnegative), and we have used the fact that

lim inf
k

max(0, ak) = max(0, lim inf
k

ak),

which follows from the monotonicity and continuity of max(0, ·).
Now it follows from (56) that

(57) lim sup
k→∞

det 1/n(H(k) ? ξε
)
≥
(

f

g ◦ ∇φ

)1/n

? ξε

almost everywhere on Ωε. But Lemma 4.2 implies that in fact

det
(
H(k) ? ξε

)
is pointwise convergent on Ωε as k →∞. Then we conclude that the sequence on the
left-hand side of (57) is actually convergent almost everywhere in Ωε and[

lim
k→∞

det
(
H(k) ? ξε

)]1/n

≥
(

f

g ◦ ∇φ

)1/n

? ξε
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almost everywhere in Ωε. Of course, by Lemma 4.2 we then have

det 1/n∇2(φ ? ξε) ≥
(

f

g ◦ ∇φ

)1/n

? ξε

almost everywhere in Ωε and in fact, by the continuity of both sides of the inequality,
everywhere in Ωε. This implies (since ξε is supported on Bε(0))

det 1/n∇2(φ ? ξε)(x) ≥
(

inf{f(y) : y ∈ Bε(x)}
sup{g (∇φ(y)) : y ∈ Bε(x),∇φ(y) exists}

)1/n

for x ∈ Ωε, completing the proof of Lemma 4.3.

4.7. Passing to the limit in ε—part I. In this subsection we prove Proposi-
tion 4.4.

Let

(58) Λε := ∇φε(Ωε).

Because Λ is convex, Λε ⊂ Λ.
To ease the notation in the following, we set

φε := φ ? ξε.

Claim 4.16. Fix ε > 0. Let gε be defined as (39). For y ∈ Λε,

gε(y) = f
(
(∇φε)−1(y)

)
/ det∇2φε

(
(∇φε)−1(y)

)
.

Proof. Since convolution with a nonnegative kernel preserves convexity, φε is a
smooth convex function. Moreover, Lemma 4.3 in fact implies that φε is uniformly
convex on any compact subset of Ωε, so ∇φε is invertible on Ωε. This is evident
if Ωε is convex, but is also true in general. Indeed, for any two points x, y ∈ Ωε,
consider the restriction of φε to the line containing these two points. The second
directional derivative of φε in the direction of a unit vector parallel to this line must
be nonnegative along this line and strictly positive near both x and y (recall that for
ε small, φε is defined, convex, and finite on a ball containing Ω, in particular on the
convex hull of Ω, and uniformly convex when restricted to any compact subset of Ωε).
In conclusion, ∇φε(x) and ∇φε(y) cannot agree. Thus,

(59) (∇φε)−1 exists on Ωε

as claimed. The standard formula for the push-forward of a measure and the defini-
tions (38)–(39) then imply the statement.

Let
(60)
gε(y) :=f

(
(∇φε)−1(y)

) sup
{
g(∇φ(x)) : x ∈ Bε

(
(∇φε)−1(y)

)
,∇φ(x) exists

}
inf
{
f(x) : x ∈ Bε

(
(∇φε)−1(y)

)} , y ∈ Λε,

g, y ∈ Λ\Λε.

Claim 4.17. On Λ,

(61) gε ≤ gε.
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Proof. The inequality is trivial on Λ\Λε since by the definitions (38), (39), and
(58),

gε = 0 outside of Λε.

On the other hand, Lemma 4.3 and Claim 4.16 precisely imply (61) on Λε.

For any ψ convex defined on a convex set C, let

dom(ψ)

denote the set of points in C at which ψ is finite, and let

(62) sing(ψ)

denote the set of points in int dom(ψ) where ψ is not differentiable. Similarly, denote
by

(63) ∆(ψ)

the complement of sing(ψ) in int dom(ψ). Note that ∆(ψ) has full measure in int dom(ψ)
because convex functions are locally Lipschitz.

Lemma 4.18. As ε→ 0, gε → g almost everywhere on Λ\∂φ (sing(φ)).

Remark 4.19. As in Remark 4.15, the proof of this lemma becomes considerably
easier in the case in which g is a uniform density and trivial when both f and g are
uniform densities.

Before proving Lemma 4.18 we make several technical remarks. Recall from the
beginning of the proof (see (26)) that φ is taken to be defined on a ball D containing
Ω in its interior, and in fact φ is the uniform limit of the φ(k) on D. Accordingly, φ
is convex and continuous on D, and dom(φ) = D. Likewise dom(φε) = Dε, where Dε

is the closed ball (concentric with D) of radius ε less than that of D.
Thus far, we have only studied the behavior of φ inside of Ω as there has been no

need to consider its behavior elsewhere. However, since Ω may not be convex, it is
important to consider φ as being defined on a (larger) convex set in order to employ
the language and results of convex analysis.

Then the convex conjugate of φ,

φ∗(y) := sup
x∈D

[〈x, y〉 − φ(x)],

is finite on all of Rn, i.e., dom(φ∗) = Rn.
The next claim collects basic properties concerning the Legendre dual that we

will need later.

Claim 4.20. (i) ∇φ∗ε = (∇φε)−1 on Λε,
(ii) ∇φ∗ε → ∇φ∗ pointwise on ∆(φ∗).

Proof. (i) This follows from (59) and the standard formula for the gradient of the
Legendre dual of a smooth strongly convex function [33, Theorem 26.5], noting that,
by Lemma 4.3, φε is indeed strongly convex on compact subsets of Ωε.

(ii) Note that φε → φ uniformly on compact subsets of int dom(φ) = intD. Then
by [34, Theorem 7.17], the φε epi-converge to φ (we again recall that fk epi-converges
to f (roughly) if the epigraphs of fk converge to the epigraph of f ; see [34, p. 240]
for more precise details). Then by [34, Theorem 11.34], we have that the φ∗ε epi-
converge to φ∗. Again using Theorem 4.7, we have that ∂φ∗ε(x) → ∇φ∗(x) for all
x ∈ int domφ∗ = Rn such that ∇φ∗(x) exists.
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Proof of Lemma 4.18. It suffices to assume that y ∈ ∆(φ∗) ∩
(
Λ\∂φ (sing(φ))

)
,

since otherwise y is contained in a measure zero set. Thus, by Claim 4.20(ii),

lim
ε→0
∇φ∗ε(y) = ∇φ∗(y).

Let
E := {ε > 0 : y ∈ Λε}.

Since gε(y) = g(y) whenever ε /∈ E (recall (60)), it suffices to show that gεj (y)→ g(y)
for all sequences εj ∈ E that tend to zero. Let εj be such a sequence. Notice that
since y ∈ Λεj for all j, by Claim 4.20(i), ∇φ∗εj (y) = (∇φεj )−1(y) for all j, so

(64) lim
j→∞

(
∇φεj

)−1 (y) = ∇φ∗(y).

Let γ > 0. Then by (64) there exists N ∈ N so that∣∣∣(∇φεj)−1 (y)−∇φ∗(y)
∣∣∣ < γ/2 ∀j ≥ N.

Take N large enough so that εj < γ/2 for all j ≥ N , so then

Bεj

((
∇φεj

)−1 (y)
)
⊂ Bγ (∇φ∗(y)) ∩ Ω ∀j ≥ N.

Thus,

inf
{
f(x) : x ∈ Bεj

((
∇φεj

)−1 (y)
)}
≥ inf {f(x) : x ∈ Bγ (∇φ∗(y)) ∩ Ω} ∀j ≥ N.

Then taking the lim inf as j → ∞ followed by the limit as γ → 0, and using the
continuity of f ,

lim inf
j→∞

inf
{
f(x) : x ∈ Bεj

((
∇φεj

)−1 (y)
)}
≥ f (∇φ∗(y)) .

Also,

inf
{
f(x) : x ∈ Bεj

((
∇φεj

)−1 (y)
)}
≤ f

((
∇φεj

)−1 (y)
)
−→
j→∞

f (∇φ∗(y))

(where the limit follows by the continuity of f), so

lim sup
j→∞

inf
{
f(x) : x ∈ Bεj

((
∇φεj

)−1 (y)
)}
≤ f (∇φ∗(y)) .

Thus,

lim
j→∞

inf
{
f(x) : x ∈ Bεj

((
∇φεj

)−1 (y)
)}

= f (∇φ∗(y)) .

It follows that

lim
j→∞

f
((
∇φεj

)−1 (y)
)

inf
{
f(x) : x ∈ Bεj

((
∇φεj

)−1 (y)
)} = 1.
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Thus, to conclude the proof of the lemma it remains only to show that

(65) lim
j→∞

sup
{
g(∇φ(x)) : x ∈ Bεj

((
∇φεj

)−1 (y)
)
,∇φ(x) exists

}
= g(y).

By the same arguments as above, we have that

lim sup
j→∞

sup
{
g(∇φ(x)) : x ∈ Bεj

((
∇φεj

)−1 (y)
)
,∇φ(x) exists

}
≤ sup {g(∇φ(x)) : x ∈ Bγ (∇φ∗(y)) ∩ Ω,∇φ(x) exists}(66)

for any γ > 0.
We claim that φ is differentiable at ∇φ∗(y). Indeed, z ∈ ∂φ(∇φ∗(y)) if and only

if ∇φ∗(y) ∈ ∂φ∗(z) [33, Corollary 23.5.1]. Thus plugging in y for z, we see that y ∈
∂φ(∇φ∗(y)). By assumption, y /∈ ∂φ (sing(φ)), so it must be that ∇φ∗(y) /∈ sing(φ),
as claimed, and, moreover,

(67) ∇φ (∇φ∗(y)) = y.

Next, for any α > 0 there exists γ > 0 such that [33, Corollary 24.5.1]

(68) ∂φ(∇φ∗(y) + v) ⊂ ∇φ(∇φ∗(y)) +Bα(0) = Bα(y) ∀v ∈ Bγ(0).

Together with the continuity of g, this implies that the right-hand side of (66) con-
verges to g(y) as γ → 0, so we have

lim sup
j→∞

sup
{
g(∇φ(y)) : y ∈ Bεj

((
∇φεj

)−1 (y)
)
,∇φ(y) exists

}
≤ g(y).

Of course, we also have

sup
{
g(∇φ(x)) : x ∈ Bεj

((
∇φεj

)−1 (y)
)
,∇φ(x) exists

}
≥ g

(
∇φ

((
∇φεj

)−1 (y) + vj

))
,

where vj is a vector with length less than εj chosen so that φ is differentiable at(
∇φεj

)−1 (y) + vj . Then, following (68), the continuity of g, (64), and (67), we have
that the right-hand side tends to g(y) as j → ∞. Thus, (65) holds, and the proof of
Lemma 4.18 is complete.

4.8. Passing to the limit in ε—part II: Proof of Proposition 4.4. Define
a measure supported on Λ,

(69) ν̃ := (∇φ)#µ.

Claim 4.21. For any sequence ε→ 0, νε = (∇φε)#µ|Ωε converges weakly to ν̃.

Proof. Let ε → 0, and let ζ be a bounded continuous function on Rn. Recalling
the definition of νε (38), the change-of-variables formula for the push-forward measure
gives

µ(Ωε)−1
∫
ζ dνε = µ(Ωε)−1

∫
ζ ◦ ∇φε dµ|Ωε

= µ(Ωε)−1
∫

Ω
(ζ ◦ ∇φε) · f · χΩε dx.



OPTIMAL TRANSPORT VIA MONGE–AMPÈRE OPTIMIZATION 3101

Now ∇φε → ∇φ pointwise almost everywhere, and χΩε → χΩ pointwise, so (recalling
that ζ is bounded and continuous), we have by bounded convergence and the fact
that µ(Ωε)→ µ(Ω) that

lim
ε→0

µ(Ωε)−1
∫
ζ dνε = µ(Ω)−1

∫
Ω
ζ ◦ ∇φdµ

= µ(Ω)−1
∫

Ω
ζ d ((∇φ)#µ) .

This proves that µ(Ω)µ(Ωε)−1νε converges weakly to ν̃ := (∇φ)#µ. Since

lim
ε→0

µ(Ωε) = µ(Ω),

we are done.

Observe that ν̃ must be absolutely continuous because the densities gε of νε are
bounded above uniformly in ε (see (60)),

(70) gε ≤ sup f sup g/ inf f < C,

and supported on the compact set Λ. Hence, ν̃ has a density that we denote by

(71) g̃ dx := ν̃.

Proposition 4.4 follows from Claim 4.21 and the next two results.

Lemma 4.22. g̃ ≤ g almost everywhere.

Corollary 4.23. g̃ = g almost everywhere, i.e., ν̃ = ν.

Proof of Corollary 4.23. By Lemma 4.22 g ≥ g̃ almost everywhere; thus,

(72)

∫
Λ
|g − g̃| =

∫
Λ

(g − g̃)

=
∫

Λ
g −

∫
Λ
g̃ = ν(Λ)− ν̃(Λ).

As noted in the previous paragraph ν̃ is absolutely continuous (with respect to the
Lebesgue measure). Hence, as ∂Λ is a Lebesgue null set, ν̃(∂Λ) = 0, i.e., Λ is a
continuity set of ν̃. Therefore, by Claim 4.21,

ν̃(Λ) = ν̃(Λ) = lim
ε→0

νε(Λ) = lim
ε→0

µ|Ωε
(

(∇φε)−1 (Λ)
)
.

Now (∇φεn)−1 (Λ) ⊃ Ωεn , so µ|Ωεn
(

(∇φεn)−1 (Λ)
)

= µ (Ωεn), and ν̃(Λ) = µ(Ω). Of
course, by (1), µ(Ω) = ν(Λ), so by (72) we have that

∫
Λ |g− g̃| = 0. This implies that

g = g̃ almost everywhere, so ν = ν̃.

Proof of Lemma 4.22. Define (recall (62))

(73) S := ∂φ (sing(φ)) .

Claim 4.24. ∆(φ∗) ∩ S is a ν̃-null set.

Proof. First we claim that on the set where φ∗ is differentiable, S can be written
as

(74) ∆(φ∗) ∩ S = ∆(φ∗) ∩ (∇φ∗)−1 (sing(φ)) .
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Indeed, suppose that y ∈ ∆(φ∗) ∩ (∇φ∗)−1 (sing(φ)). Then ∇φ∗(y) ∈ sing(φ). Now
by duality [33, Corollary 23.5.1], y ∈ ∂φ (∇φ∗(y)), and so y ∈ S.

Then suppose that y ∈ ∆(φ∗) ∩ S. Then y ∈ ∂φ(x) for some x ∈ sing(φ),
implying, again by duality [33, Corollary 23.5.1], that x ∈ ∂φ∗(y), i.e., x = ∇φ∗(y),
and y ∈ (∇φ∗)−1 (sing(φ)). This gives the claimed set equality.

Next, we claim that

(75) ∆(φ∗) ∩ S is Borel.

For the proof, define an auxiliary vector-valued function Φ : Rn → Ω by

(76) Φ(y) :=

{
∇φ∗(y) on ∆(φ∗),
z0 on sing(φ∗),

where z0 ∈ ∆(φ) ∩ Ω (any such (fixed) z0 will do).

Claim 4.25. Φ is a Borel-measurable function.

Proof. Recall that the set of points of differentiability of a continuous function
(e.g., φ and φ∗) is Borel (this is an elementary fact, though see, e.g., [41]), and hence
sing(φ), sing(φ∗) are also Borel.

Let U be open. Recall that ∇φ∗ is continuous on ∆(φ∗) [33, Corollary 24.5.1].
Thus, if z0 /∈ U , then Φ−1(U) is open in ∆(φ∗), i.e., Φ−1(U) = O ∩∆(φ∗) for some
open O. If z0 ∈ U , then Φ−1(U) is the union of sing(φ∗) with some set open in ∆(φ∗).
In either case, Φ−1(U) is Borel, i.e., Φ is a Borel-measurable function.

Therefore, Φ−1(sing(φ)) is Borel. Notice, since by construction z0 /∈ sing(φ), that

Φ−1(sing(φ)) = (∇φ∗)−1 (sing(φ)) ∩∆(φ∗),

which together with (74) proves (75).
Thus, ∆(φ∗) ∩ S is ν̃-measurable since ν̃ is absolutely continuous. Compute

ν̃(∆(φ∗) ∩ S) =
∫
χ∆(φ∗)∩S d ((∇φ)#µ)

=
∫

Ω
χ∆(φ∗)∩S ◦ ∇φdµ.

This integral vanishes since the integrand is only nonzero on the Lebesgue null set
sing(φ), while µ is absolutely continuous. The proof of Claim 4.24 is complete.

Define a set E ⊂ sing(φ∗) by

(77) (∆(φ∗) ∩ S)c = Sc ∪ sing(φ∗) =: Sc ∪ E

and by requiring that the union in the last expression be disjoint. Since E is contained
within a set of Lebesgue measure zero, E is Lebesgue measurable with measure zero,
and hence Sc is Lebesgue measurable as well. Claim 4.24 implies that

(78) ν̃ = ν̃|(∆(φ∗)∩S)c = ν̃|Sc∪sing(φ∗) = ν̃|Sc∪E .

By the absolute continuity of ν̃ (recall (71)),

(79) g̃(x) = lim
r→0

ν̃(Br(x))
vol(Br(x))

for a.e. x ∈ Λ.
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Let α > 0 and let U be an open set containing Sc ∪ E with

(80) m
(
U\(Sc ∪ E)

)
< α

(where m denotes the Lebesgue measure). This is possible because Sc ∪ E is Borel
thanks to (75) and (77). Then, using (78),

(81) ν̃(Br(x)) = ν̃
(
Br(x) ∩ (Sc ∪ E)

)
≤ ν̃(Br(x) ∩ U).

Now since Br(x) ∩ U is open, by Claim 4.21,

(82) ν̃(Br(x) ∩ U) ≤ lim inf
ε→0

νε(Br(x) ∩ U) ∀r > 0.

Observe that

Br(x) ∩ U =
(
Br(x) ∩ (Sc ∪ E)

)
∪
(
Br(x) ∩ (U\(Sc ∪ E))

)
⊂
(
Br(x) ∩ (Sc ∪ E)

)
∪
(
U\(Sc ∪ E)

)
,

so then by (39), (70), (80), and Claim 4.17,

νε(Br(x) ∩ U) ≤ νε
(
Br(x) ∩ (Sc ∪ E)

)
+ νε

(
U\(Sc ∪ E)

)
≤
∫
Br(x)∩(Sc∪E)

gε + Cm
(
U\(Sc ∪ E)

)
≤
∫
Br(x)∩Sc

gε + Cα,

where in the last step we used the fact that E has Lebesgue measure zero. Now by
Lemma 4.18, gε → g almost everywhere on Sc, so by bounded convergence (since the
gε are uniformly bounded by definition (60) by the same bound as in (70)) the last
expression is convergent and

(83) lim inf
ε→0

νε(Br(x) ∩ U) ≤
∫
Br(x)∩Sc

g + Cα.

Then by (81), (82), and (83), we have that

ν̃(Br(x)) ≤
∫
Br(x)∩Sc

g + Cα ≤
∫
Br(x)

g + Cα

for all α > 0, i.e.,

(84) ν̃(Br(x)) ≤
∫
Br(x)

g.

Then by (79), (84), and continuity of g,

g̃(x) ≤ lim inf
r→0

1
vol(Br(x))

∫
Br(x)

g = g(x)

for a.e. x, concluding the proof of Lemma 4.22.
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4.9. Concluding the proof via the stability of optimal transport. We
are at last in a position to complete the proof of the main theorem. As explained in
section 4.3 it remains only to establish Lemma 4.5, whose proof hinges on two claims.
The proof of these claims will follow the proof of the lemma.

Recall that ∇ϕ is the unique optimal transport map from µ to ν and ϕ(0) = 0.

Claim 4.26. Fix δ > 0. As ε tends to zero, ∇φε converges to ∇ϕ in probability
with respect to µ|Ωδ/µ(Ωδ).

Claim 4.27. As ε tends to zero, ∇φε converges to ∇φ almost everywhere on Ω.

Proof of Lemma 4.5. Let β > 0. A consequence of Claim 4.26 is that there exists
a sequence εj → 0 such that ∇φεj → ∇ϕ µ-almost everywhere on Ωβ , hence almost
everywhere on Ωβ (because f is bounded away from zero). But, by Claim 4.27,
∇φεj → ∇φ almost everywhere on Ωβ . Hence, ∇φ = ∇ϕ on Ωβ . Since

⋃
β>0 Ωβ = Ω,

we have that T = ∇φ on Ω, i.e., ∇ϕ = ∇φ almost everywhere. Since ϕ, φ ∈ C0,1(Ω),
both are absolutely continuous, and since φ(0) = 0 = ϕ(0), we have that φ = ϕ
on Ω.

Proof of Claim 4.26. The stability theorem for optimal transport maps states
that whenever the push-forward of a given probability measure α under a sequence
of optimal transport maps {Tj}j∈N converges weakly to β, i.e.,

(Tj)#α→ β weakly as j →∞,

then Tj converges in probability to the unique optimal transport map pushing forward
α to β, assuming such a unique map exists [40, Corollary 5.23]. We need a slight
extension of this result where instead of a fixed measure α we have a sequence of
measures αj converging weakly to α, and

(Tj)#αj → β weakly as j →∞.

The result we need is stated in Proposition 4.29 below. Its proof is given in section
4.10.

Now, Proposition 4.29 may be applied to

αj := µ(Ωε(j))−1µε(j), Tj := ∇φε(j), α := µ(Ω)−1µ, β := µ(Ω)−1ν,

where {ε(j)}j∈N is any sequence of positive numbers converging to 0. Indeed, Bre-
nier’s theorem [8] gives that Tj is an optimal transport map pushing forward αj to
µ(Ωε(j))−1νε(j), and these latter measures converge weakly to β by Proposition 4.4,
while αj evidently weakly converges to α. Thus,

(85) lim
ε→0

µ|Ωε
({
x ∈ Ω : d

(
∇φε(x),∇ϕ(x)) ≥ γ

)})
→ 0 ∀γ > 0.

Let δ, γ > 0. Then for all ε sufficiently close to zero, Ωδ ⊂ Ωε ⊂ Ω, so

µ|Ωδ
(
{x ∈ Ωδ : d (∇φε(x),∇ϕ(x)) ≥ γ}

)
= µ

(
Ωδ ∩ {x ∈ Ωδ : d (∇φε(x),∇ϕ(x)) ≥ γ}

)
≤ µ

(
Ωε ∩ {x ∈ Ω : d (∇φε(x),∇ϕ(x)) ≥ γ}

)
= µ|Ωε

(
{x ∈ Ω : d (∇φε(x),∇ϕ(x)) ≥ γ}

)
,

and the last expression approaches zero as ε → 0 by (85), concluding the proof of
Claim 4.26.
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Proof of Claim 4.27. Because φ is convex and continuous, φε → φ pointwise.
Semicontinuity of the subdifferential map [33, Theorem 24.5] gives that for any x ∈ Ω
and α > 0,

∂φε(x) ⊂ ∂φ(x) +Bα(0) ∀ε sufficiently small

(this is a low-brow version of Theorem 4.7). Thus at a point x such that ∂φ is a
singleton,

|∇φ(x)−∇φε(x)| < α

for all ε sufficiently small, i.e., ∇φε(x) → ∇φ(x). Since ∂φ is a singleton almost
everywhere, the claim follows.

4.10. A stability result. Let Π(α, β) denote the set of probability measures
on X × Y whose marginals are α on X and β on Y , i.e., for every µ ∈ Π(α, β),
(π1)#µ = α, (π2)#µ = β, where π1 : X × Y → X,π2 : X × Y → Y are the natural
projections. Elements of Π(α, β) are called transference plans. Given a function
c : X × Y → R, define the cost associated to µ ∈ Π(α, β) by∫

X×Y
c dµ.

A transference plan is called optimal if it realizes the infimum of the cost over Π(α, β).
Optimal transference plans satisfy the following standard stability result [40, Theorem
5.20].

Theorem 4.28. Let X and Y be open subsets of Rn, and let c : X × Y → R be a
continuous cost function with inf c > −∞. Let αj and βj be sequences of probability
measures on X and Y , respectively, such that αj converges weakly to α and βj con-
verges weakly to β. For each j, let πj be an optimal transference plan between αj and
βj. Assume that ∫

c dπj <∞ ∀j, lim inf
j

∫
c dπj <∞.

Then there exists a subsequence {jl}l∈N such that πjl converges weakly to an optimal
transference plan.

The following result, and its proof, are a slight modification of [40, Corollary
5.23].

Proposition 4.29. Let X and Y be open subsets of Rn, and let c : X×Y → R be
a continuous cost function with inf c > −∞. Let αj and βj be sequences of probability
measures on X and Y , respectively, such that αj ≤ Cα for all j, and αj converges
weakly to α and βj converges weakly to β. For each j, let πj be an optimal transference
plan between αj and βj. Assume that∫

c dπj <∞ ∀j, lim inf
j

∫
c dπj <∞.

Suppose that there exist measurable maps Tj , T : X → Y such that πj = (id⊗ Tj)# αj
and π = (id⊗ T )# α. Assume additionally that π is the unique optimal transference
plan in Π(α, β). Then

lim
j→∞

αj [{x ∈ X : |Tj(x)− T (x)| > ε}] = 0 ∀ε > 0.
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Proof. First, note that by Theorem 4.28 and the uniqueness of π, we have that
πj → π weakly (and there is no need to take a subsequence). Now, let ε > 0 and
δ > 0. By Lusin’s theorem, there exists a compact set K ⊂ X with α(X\K) < C−1δ
(so αj(X\K) < δ) such that the restriction of T to K is continuous. Then let

Aε = {(x, y) ∈ K × Y : |T (x)− y| ≥ ε} .

By the continuity of T on K, Aε is closed in K × Y , hence also in X × Y . Since
π = (id⊗ T )# α, meaning in particular that π is concentrated on the graph of T , we
have that π(Aε) = 0. Then by weak convergence and the fact that Aε is closed,

0 = π(Aε) ≥ lim sup
j→∞

πj(Aε)

= lim sup
j→∞

πj ({(x, y) ∈ K × Y : |T (x)− y| ≥ ε})

= lim sup
j→∞

αj ({x ∈ K : |T (x)− Tj(x)| ≥ ε})

≥ lim sup
j→∞

αj ({x ∈ X : |T (x)− Tj(x)| ≥ ε})− αj(X\K)

≥ lim sup
j→∞

αj ({x ∈ X : |T (x)− Tj(x)| ≥ ε})− δ,

and the desired result follows by letting δ tend to zero.

5. Weakening the regularity assumption. As promised in Remark 3.2, we
now set out to prove a stronger version of Proposition 3.1, i.e., a version that does
not require regularity of the Brenier potential ϕ up to the boundary. In the following
we only assume ϕ ∈ C2(Ω). As discussed in Remark 3.2, this regularity assumption
is satisfied automatically under the hypotheses of Theorem 1.9, and consequently
Corollary 5.5 below establishes that Theorem 1.9 follows from Theorem 1.6.

Recall (9), which we restate here for convenience:
(86)

Fi

({
ψ

(k)
j , η

(k)
j

}N(k)
j=1

)
:= max

{
0,−(detHi)1/n +

(
f
(∑n

j=0 xij
n+1

)
/g
(∑n

j=0 ηij
n+1

))1/n
}
.

Furthermore, recall (10), also restated here:

(87) F
({
ψ

(k)
j , η

(k)
j

}N(k)
j=1

)
:=

M(k)∑
i=1

Vi · Fi
({
ψ

(k)
j , η

(k)
j

}N(k)
j=1

)
,

so again Fi is a per-simplex penalty, and F is the objective function of the DMAOP.
To prove the strengthened version of Proposition 3.1, it will not suffice as it did

before to simply plug the discrete data (18) associated to the Brenier potential ϕ
into the DMAOP and hope that the corresponding cost goes to zero as k →∞. The
reason is that we no longer have that the Hessian of ϕ is bounded away from zero on
Ω. Instead, we will define functions that are strongly convex on Rn and that agree
with ϕ on subsets that exhaust Ω. Since the functions that we construct may not be
differentiable, we will also need to mollify slightly before plugging the associated data
into the DMAOP.

Let U be open and compactly contained in Ω. In turn, let V be open such that
U ⊂⊂ V and V ⊂⊂ Ω. Then there exists α > 0 such that ∇2ϕ(x) ≥ αI for all x ∈ V ,
and δ := dist(U, V c) is strictly positive.
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Also, dist(∇ϕ(x),Λc) is continuous in x over the compact set U and (since
∇ϕ(U) ⊂ Λ) strictly positive. Hence the function attains a positive minimum γ
over U , i.e., dist(∇ϕ(x),Λc) ≥ γ > 0 for all x ∈ U .

Let R = diam(Ω), and define

(88) β := min
{
α,
αδ2

R2 ,
γ

2R

}
.

For every point y ∈ U , define a quadratic polynomial Qy on all of Rn by

(89) Qy(x) := ϕ(y) + 〈∇ϕ(y), x− y〉+
1
2
β|x− y|2.

Lemma 5.1. For any fixed y ∈ U , Qy ≤ ϕ on U and ∇Qy(Ω+) ⊂ Λ for some
open set Ω+ such that Ω ⊂⊂ Ω+.

Proof. To simplify the proof of this claim, we fix y ∈ U and consider

(90) ψ(x) := ϕ(x)− ϕ(y)− 〈∇ϕ(y), x− y〉.

For the first statement it suffices to show that

(91) ψ(x) ≥ 1
2
β|x− y|2 ∀x ∈ U .

Note that ψ is convex on Rn (since the Brenier potential may be taken to be defined
on Rn) with ψ(0) = 0, ∇ψ(0) = 0, and ∇2ψ(x) ≥ αI for all x ∈ V . Evidently ψ ≥ 0
everywhere. By integration along rays, for x ∈ Bδ(y) ⊂ V ,

(92) ψ(x) ≥ 1
2
α|x− y|2.

In particular, since α ≥ β, inequality (91) follows but only for x ∈ Bδ(y).
Now let x ∈ U \ Bδ(y). In order to deal with the possible nonconvexity of the

domain U , let z ∈ ∂Bδ(y) (so |x − z| = δ) such that x, y, z are collinear. From (90)
we have that ψ(z) ≥ 1

2αδ
2. From this fact, together with (88), we obtain

1
2
β|x− y|2 ≤ 1

2
βR2 ≤ 1

2
αδ2 ≤ ψ(z).

Now by our choice of z, we can write z = tx + (1 − t)y for some t ∈ [0, 1]. Then by
convexity (and the nonnegativity of ψ),

ψ(z) ≤ tψ(x) + (1− t)ψ(y) = tψ(x) ≤ ψ(x).

Thus we have established that 1
2β|x−y|

2 ≤ ψ(x), and the first statement of the lemma
is proved.

Take Ω+ to be an open set with diam(Ω+) ≤ 3
2R such that Ω ⊂⊂ Ω+. It remains

to show that ∇Qy(Ω+) ⊂ Λ. Let x ∈ Ω+, and note that

∇Qy(x) = ∇ϕ(y) + β(x− y),

so (recalling (88))

|∇Qy(x)−∇ϕ(y)| ≤ 3
2
βR ≤ 3

4
γ.

But since dist(∇ϕ(x),Λc) ≥ γ, it follows that ∇Qy(x) ∈ Λ. This completes the
proof.
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In summary, we have shown that for any U open and compactly contained in Ω,
there exists β > 0 such that the quadratic polynomial Qy as defined in (89) satisfies
Qy ≤ ϕ on U and ∇Qy(Ω+) ⊂ Λ for all y, for some open Ω+ such that Ω ⊂⊂ Ω+.
(Note that β does not depend on y.) Then define ϕU on all of Rn via

(93) ϕU (x) := sup
y∈U

Qy(x).

Evidently ϕU = ϕ on U and ∇ϕU (Ω+) ⊂ Λ (see, e.g., [32, Proposition 2.7]). Since
the pointwise supremum of β-strongly convex functions is β-strongly convex, ϕU is
β-strongly convex.

Although ϕU is not necessarily differentiable, we can substitute ϕU with a smooth
approximation via the following lemma.

Lemma 5.2. Let ε > 0, and consider an open set U ⊂⊂ Ω. There exists a smooth
convex function ϕ̃ : Rn → R with ∇2ϕ̃ ≥ βI, ∇ϕ̃(Ω) ⊂ Λ, and ‖ϕ̃− ϕ‖C2(U) < ε.

Proof. Let V be open such that U ⊂⊂ V ⊂⊂ Ω. By the preceding arguments, we
can take ϕV to be β-strongly convex and agreeing with ϕ on V such that ∇ϕV (Ω+) ⊂
Λ. Let ξδ denote, as before, a standard mollifier supported on Bδ(0). For δ sufficiently
small, a δ-neighborhood of U is contained in V , so in fact, for small δ, we have
ϕV ? ξδ = ϕ ? ξδ on U . It follows that ‖ϕV ? ξδ − ϕ‖C2(U) < ε for small enough δ.
Furthermore, for δ sufficiently small, a δ-neighborhood of Ω is contained in Ω+, so
by the convexity of Λ, we have that ∇(ϕV ? ξδ)(Ω) ⊂ Λ. Noticing that mollification
preserves β-strong convexity, the proof is completed by taking ϕ̃ = ϕV ? ξδ for some
δ small enough.

Remark 5.3. One can avoid using the convexity of Λ in the proof of the preceding
lemma by a more complicated argument. However, since we have assumed this fact
elsewhere in this article, we make use of it here to keep the proof as simple as possible.

As before, let Ωε be as in Definition 1.5, and define Uε := Ωε + Bε/2(0) ⊂ Ω.
By the preceding lemma, we can let ϕε be smooth and convex such that ∇2ϕε ≥ βI,
∇ϕε(Ω) ⊂ Λ, and ‖ϕε − ϕ‖C2(Uε) < ε. (Note that here ϕε is not the same as ϕ ? ξε.)

By analogy with (17), we consider the cost

(94) d(k)
ε := F

({
ϕε(x

(k)
j ),∇ϕε(x(k)

j )
}N(k)
j=1

)
associated to the data

(95)
{
ϕε(x

(k)
j ),∇ϕε(x(k)

j )
}N(k)
j=1 ∈ (R× Rn)N(k)

extracted from our modified Brenier potential ϕε.
We now state and prove our improvement of Proposition 3.1.

Proposition 5.4. Let
{
{S(k)

i }
M(k)
i=1

}
k∈N be a sequence of admissible and regular

almost-triangulations of Ω (recall Definitions 1.5 and 1.8). Let ϕ be the unique Brenier
solution of the Monge–Ampère equation (2) with ϕ(0) = 0, and suppose that ϕ ∈
C2(Ω). Then

(i) the data (95) satisfies the constraints (6)–(8) for all k sufficiently large;
(ii) lim supk d

(k)
ε = o(ε), where d(k)

ε is defined as in (94).

Let ck be the optimal cost of the kth DMAOP. Let ε > 0. If the data (95) asso-
ciated with ϕε is feasible (which is true by part (i) of Proposition 5.4 for k sufficiently
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large), then ck ≤ d
(k)
ε . Thus by part (ii) of Proposition 5.4, lim supk ck = o(ε). This

yields the following analogue of Corollary 3.3.

Corollary 5.5. Under the assumptions of Proposition 5.4, limk ck = 0.

Proof of Proposition 5.4. First let

(96) Ik =
{
i = 1, . . . ,M(k) : S(k)

i ⊂ Uε
}
,

and let

(97) Jk = {1, . . . ,M(k)} \ Ik.

Also, recall that given a matrix A = [aij ], we define

||A|| = max
i,j
|aij |.

Since ϕε is smooth (and so in particular in C2,α(Ω)) and strongly convex on Rn,
we have by the same reasoning as in the proof of Lemma 3.4 that (recalling (4))

lim
k

max
i∈{1,...,M(k)}

∥∥∥H(S(k)
i ,

{
∇ϕε(x(k)

i0
), . . . ,∇ϕε(x(k)

in
)
})
−∇2ϕε(x

(k)
i0

)
∥∥∥ = 0.

From this it follows (as in the proof of Proposition 3.1) that the data (95) satisfies
the constraint (8). That the data satisfies the constraints (6) and (7) is evident from
the construction of ϕε.

Furthermore, since ‖ϕε − ϕ‖C2(Uε) < ε by construction, we have that

lim sup
k

max
i∈Ik

∥∥∥H(S(k)
i ,

{
∇ϕε(x(k)

i0
), . . . ,∇ϕε(x(k)

in
)
})
−∇2ϕ(x(k)

i0
)
∥∥∥ ≤ ε.

From this it follows (as in the proof of Proposition 3.1) that

lim sup
k

max
i∈Ik

Fi

({
ϕε(x

(k)
j ),∇ϕε(x(k)

j )
}N(k)
j=1

)
= o(ε).

Henceforth we will abbreviate Fi := Fi
({
ϕε(x

(k)
j ),∇ϕε(x(k)

j )
}N(k)
j=1

)
. Then the pre-

ceding implies that
lim sup

k

∑
i∈Ik

Vi · Fi = o(ε).

Thus to establish that lim supk d
(k)
ε = o(ε), it will suffice to show that

lim sup
k

∑
i∈Jk

Vi · Fi = o(ε).

However, since f is bounded above, g is bounded away from zero, and (·)1/n is bounded
below by zero over the nonnegative numbers, it follows from (86) that Fi ≤ C for some
constant C (depending only on f, g). Thus

lim sup
k

∑
i∈Jk

Vi · Fi ≤ C lim sup
k

∑
i∈Jk

Vi = C lim sup
k

vol

( ⋃
i∈Jk

Si

)
.
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Fig. 1. Source measure supported on a convex polygon Ω (shown triangulated in the above).
The shading in the background represents the density of f , though we understand that f ≡ 0 outside
of Ω. There are 405 points in this triangulation.

Now suppose i ∈ Jk, and assume k is large enough such that the maximal simplex
diameter is at most ε/4. Then Si contains a point x that is not in Uε. Recall that
Uε = Ωε +Bε/2(0), so it follows that dist(x,Ωε) ≥ ε/2. Since diam(Si) ≤ ε/4, we see
that Si ⊂ Ω \ Ωε. Thus

vol

( ⋃
i∈Jk

Si

)
≤ vol

(
Ω \ Ωε

)
= o(ε),

and this completes the proof.

6. Numerical experiments for the DMAOP.

6.1. Implementation details. Only two details of the implementation bear
mentioning. First, we used DistMesh for the triangulation of Ω [30]. Second, we
solved each convex optimization problem using MOSEK [25], called via the modeling
language YALMIP [22].

6.2. Examples. We will consider only examples in the plane. Furthermore, we
will always take the target measure ν to be the measure whose support is the unit ball
and having uniform density on its support. It is not difficult to consider other convex
target domains or to consider nonuniform log-concave densities (the most prominent
examples being Gaussian densities). However, the visualizations that follow are more
intuitive in the case that the target measure has uniform density on its support.

For our first example, we consider a source measure (see Figure 1) supported on
a convex polygon Ω with an oscillatory density f bounded away from zero.

For the triangulation (consisting of 405 vertices) pictured in Figure 1, the DMAOP
took 49.3 seconds to solve on a 2011 MacBook Pro with a 2.2 GHz Intel Core i7
processor.
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Fig. 2. Visualization of numerical solution of the dynamical optimal transport problem asso-
ciated with the example of Figures 1 and 4. Times t = 0, 1

3 , 2
3 , 1 are depicted at upper left, upper

right, lower left, and lower right, respectively. (The target measure is uniform on the unit disc.)

For every point x in the triangulation we can consider the interpolation Tt(x) :=
(1 − t)x + tT (x) for t ∈ [0, 1]. We visualize this interpolation at times t = 0, 1

3 ,
2
3 , 1.

This interpolation can be understood as the solution of a dynamical optimal transport
problem, though we will not discuss this fact further. See Figure 2.

Next we consider a source measure with uniform density on a nonconvex support.
See Figure 3 for a visualization of the domain, its triangulation, and the numerical
solution to the dynamical optimal transport problem. Our triangulation uses 340
points, and solving the DMAOP took 51.2 seconds. Note that a detailed theoretical
study of a similar example is given in [11]. In Figure 4 we visualize the computed
convex potential.

Lastly we consider an example in which the source measure has highly irregular
support (again with uniform density on its support). See Figure 5 for details. There
are 359 points in our triangulation, and solving the DMAOP took 58.9 seconds.

Notice that in the last two examples above, the inverse optimal maps are dis-
continuous. Nonetheless, we are able to approximate them by calculating the (con-
tinuous) forward maps and then inverting. Our method succeeds at highlighting the
discontinuity sets of these inverse maps.

6.3. Run time and convergence analysis. We now fix an example problem
and analyze the performance of our algorithm on discretizations of varying coarseness
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Fig. 3. Visualization of numerical solution of the dynamical optimal transport problem with
source measure taken to be uniform and supported on the domain in the upper left and target measure
taken to be uniform on the unit disc. Times t = 0, 1

3 , 2
3 , 1 are depicted at upper left, upper right,

lower left, and lower right, respectively.

to gain some idea of the performance of our method, as well as its fundamental
weaknesses. Specifically, we analyze the problem in the second example considered
above (depicted in Figure 3).

See Figure 6 for the dependence of run time on problem size. (All numerical
computations were performed on a 2011 MacBook Pro with a 2.2 GHz Intel Core i7
processor.) The asymptotic behavior of the total run time (which includes mesh gener-
ation as well as setting up the convex problem in the modeling language YALMIP) is,
empirically, no worse than quadratic. The time spent by the convex solver (MOSEK)
on the actual optimization problem (arguably a more fundamental quantity) is also
empirically quadratic. It is reasonable that this would be the case, since the number
of constraints of the DMAOP grows quadratically in the number of discretization
points.

Next we examine the dependence of the cost (as in Definition 1.3) of our numerical
solution on problem size. Figure 7 indicates that the cost decays as N−

1
2 (where N

is the number of discretization points). Since we are in dimension two, we expect
that the mesh scale h decays as N−

1
2 , so in fact the cost decays like h. Note that the

proof of Lemma 3.4 guarantees that the optimal cost is O(hα) whenever the Brenier
potential satisfies ϕ ∈ C2,α(Ω), and generally one may take α = 1 if f and g are
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Fig. 4. Visualization of the convex potential retrieved by solving the DMAOP associated to
the source measure and triangulation in Figure 3, with shading corresponding to the value of the
potential. (The target measure is the uniform on the unit disc.)

sufficiently regular.
We also study the decay of a two-sided cost (not explicitly optimized in the

DMAOP) that penalizes both excessive contraction and excessive expansion. With a
view toward Definition 1.3, consider the quantity

c̃ :=
M∑
i=1

Vi ·
∣∣∣− (detHi)

1/n +
(
f
(∑n

j=0 xij
n+1

)
/g
(∑n

j=0 ηij
n+1

))1/n ∣∣∣,
where the ηj are the ηj of our solution of the DMAOP, and the Hi are defined with
respect to the ηj as in (4). c̃ can be thought of as the average over the simplices
of a two-sided penalty on area distortion. The dependence of c̃ on N is depicted in
Figure 7 and does not differ qualitatively from the dependence of the DMAOP cost
on N .

6.4. Discussion. We include here some remarks on features and drawbacks of
our numerical method.

First, we comment that the method can be used to compute discontinuous optimal
maps by inverting optimal maps from nonconvex to convex domains, and the discon-
tinuity sets can be resolved sharply (see section 6.2 for examples). These examples
are in practice no more computationally expensive than convex-to-convex examples.

Also, although we have not taken advantage of this feature in the examples of
section 6.2, we remark that the method suggests an adaptive approach in which
resolution is added where it is wanted or needed. Indeed, we may simply solve the
DMAOP for a triangulation with a greater density of vertices in desired areas.

A significant limitation of our implementation is the requirement that the target
measure have density g for which g−1/n is convex. While the DMAOP still admits
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Fig. 5. Visualization of numerical solution of the dynamical optimal transport problem with
source measure taken to be uniform and supported on the domain in the upper left and target measure
taken to be uniform on the unit disc. Times t = 0, 1

3 , 2
3 , 1 are depicted at upper left, upper right,

lower left, and lower right, respectively.

a minimizer for general target measures, it is only clear a priori that the DMAOP
can be practically solved when it is convex. We propose a remedy for this issue in
section 8.

Another limitation is that the method is only first-order accurate. This is con-
firmed empirically in section 6.3, but it is also to be expected due to the use of
first-order finite difference quotients in the definition (4) of the Hi in terms of the
subgradients ηj . One might hope to replace these with higher-order difference quo-
tients, and indeed we will do this in section 7.

Lastly, the quadratic growth of run time in N is a major drawback. This growth
is due to to the quadratic increase in the number of constraints of the DMAOP. The
modification introduced in section 7 will also address this issue.

7. Improving the efficiency and accuracy of the DMAOP. As remarked
above, the quadratic growth of the problem size of the DMAOP in the number of
discretization points all but disqualifies it from competitive use in application. The
quadratic growth of the problem size derives from our global enforcement of the con-
vexity of the potential. One might hope that this issue could be remedied by instead
relying on a constraint that enforces convexity while relying only on local (second-
derivative) information. Moreover, one might hope that the first-order accuracy of
the scheme could be improved.
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Fig. 6. Plot of total run time of the algorithm and run time of the convex solver against the
number of discretization points.

In this section, we introduce a modification of the DMAOP that addresses both
of these concerns. The basic idea of the modification is to consider only the values
of the convex potential as optimization variables. Instead of considering subgradients
as separate variables, as we did in the DMAOP, and enforcing convexity globally via
subgradient inequalities (which previously resulted in the imposition of a quadratically
growing number of constraints), we define gradients directly in terms of the values of
the potential via finite difference quotients and enforce convexity locally by enforcing
the positive-semidefiniteness of finite difference Hessians of the potential. Moreover,
we do all of this on a rectangular grid using standard second-order accurate finite
difference quotients.

We will restrict our attention to the case of Ω = [−1, 1]n =: K, and we assume
that Λ is convex and g is constant, equal to 1/vol(Λ). (We shall see in the next
section that general g can be tackled by solving several problems with constant target
density.) For numerical experiments we shall consider n = 2, Λ = K. We do not
prove the convergence of this method, though we make some remarks on this matter
below.

For h > 0 (the mesh size), let Zh = {hk : k ∈ Z} and Znh = (Zh)n. For any set
O define Oh := O ∩ Zh and ∂Oh := ∂O ∩ Zh. We only consider h such that 1/h is
an integer. We will treat discretizations with respect to the grid Kh := [0, 1]nh, i.e.,
solutions of our discrete problems will be functions u : Kh → R. We will refer to such
functions, i.e., functions Kh → R, as grid functions. The space of grid functions will
be denoted RKh .

At every point x ∈ Kh, we define finite difference operators Dh,x = (Dh,x,i)ni=1 :
RKh → Rn and D2

h,x = (D2
h,x,i,j)

n
i,j=1 : RKh → Rn×n, which are second-order accurate

finite difference approximations of the gradient and Hessian, respectively. At interior
points x ∈ Kh \ ∂Kh, we take these to be given, respectively, by the usual centered
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Fig. 7. Log-log plot of the DMAOP cost of the numerical solution and a two-sided cost (c̃,
introduced in section 6.3) against the number of discretization points.

finite difference approximations of first derivatives and the usual 3n-point stencil for
the Hessian. More precisely, for an interior point x and u ∈ RKh , we take

Dh,x,iu =
1

2h
[u(x+ hei)− u(x− hei)] ,

D2
h,x,i,iu =

1
h2 [u(x+ hei)− 2u(x) + u(x− hei)] ,

and (for i 6= j)

D2
h,x,i,ju =

1
4h2

∑
σ1,σ2∈{−1,1}

σ1σ2 u(x+ hσ1ei + hσ2ej).

For points x ∈ ∂Kh, we replace the relevant components of these finite difference
operators with appropriate second-order accurate forward or backward finite differ-
ences as needed.

Then we solve the following problem.

Definition 7.1. Let h > 0 and f ∈ RKh . The revised discrete Monge–Ampère
optimization problem (RDMAOP) associated to the data (f, h) is

minimize
ψ∈RKh

∑
x∈Kh

max
{

0,−
(
detD2

h,xψ
)1/n

+ (vol(Λ)f(x))1/n
}

subject to Dh,xψ ∈ K, x ∈ Kh,

D2
h,xψ ≥ 0, x ∈ Kh.

Compared to Definition 1.3 (DMAOP), we see that instead of including the gra-
dients (in Definition 1.3, the ηj) as optimization variables and then defining finite
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difference Hessians in terms of these variables, the RDMAOP instead defines both
gradients and Hessians directly in terms of the grid function potential ψ, the only
optimization variable. Moreover, the convexity of ψ is enforced locally. We remark
that convexity could alternatively be enforced via more sophisticated methods, in
particular via the wide stencil finite differences of Oberman [26], but this does not
seem to be needed in the examples we consider (since the forward optimal transport
maps are C1).

7.1. Theoretical remarks on convergence. Although (as we will confirm be-
low) this method is more efficient and more accurate than the DMAOP, the DMAOP
lends itself more naturally to a convergence proof because it allows for the simple
construction of optimization potentials that are bona fide convex functions on Rn.
By contrast, it is not clear how to extract a convex function defined on Rn from a
grid function with positive semidefinite discrete Hessians (or even from a grid func-
tion that is convex in the wide stencil sense of [26]). Thus the major missing piece
in a convergence proof for the RDMAOP is a way of extracting convex potentials
from the grid functions retrieved by the optimization. We conjecture that this can be
done, but our working proof involves new ideas that take us too far afield from the
analysis in this paper and which are applicable more widely in the numerical analysis
for nonlinear elliptic PDEs. For these reasons, a full theoretical investigation of the
convergence of the RDMAOP will be the subject of future work.

7.2. Numerical experiments. We remark that the RDMAOP is a second-
order cone program. We call MOSEK directly to solve it numerically. The numerical
results of this section were performed on a 2015 MacBook Pro with a 2.5 GHz Intel
Core i7 processor.

First we consider a nontrivial example (see [5]) for which an explicit solution is
available. To maintain consistency with [5], we will consider Ω = Λ = (−0.5, 0.5)2,
though of course our discussion can be transferred by scaling to the domain (−1, 1)2

in order to fit into the framework described above.
Define

q(z) =
(
− 1

8π
z2 +

1
256π3 +

1
32π

)
cos(8πz) +

1
32π2 z sin(8πz),

and in turn define the source density

(98)
f(x1, x2) = 1 + 4(q′′(x1)q(x2) + q(x1)q′′(x2))

+ 16(q(x1)q(x2)q′′(x1)q′′(x2)− q′(x1)2q′(x2)2)

on (−0.5, 0.5)2. The corresponding OT problem (with target density uniform on
(−0.5, 0.5)2) admits the explicit solution

ϕx1(x1, x2) = x1 + 4q′(x1)q(x2), ϕx2(x1, x2) = x2 + 4q(x1)q′(x2).

The source density and the image of the grid Kh under the computed transport
map with h = 1/64 are shown in Figure 8.

Detailed numerical results (for the rescaled problem) are recorded in Table 1. We
observe error on the order of h2, consistent with the second-order accuracy of the
scheme, as well as linear growth in computational time with respect to the number of
discretization points. (Note that the number of discretization points is on the order of
h−2 since we are working in dimension 2.) We record separately the time taken by an
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Fig. 8. The source density defined by (98), after rescaling to (−1, 1)2, and the image of Kh

under the computed transport map (h = 1/64).

Table 1
RDMAOP results for the OT problem defined by the source density of (98). Errors refer to

error of the transport (i.e., gradient) map. Nx denotes the number of discretization points along a
single dimension. Thus the number of optimization variables is N2

x . “On. time” and “Off. time”
refer to the times taken by the online and offline parts of the computation, respectively.

h Nx L∞ error L2 error On. time (s) Off. time (s)

2−3 17 0.0324 0.0124 1.53 0.72
2−4 33 0.0022 0.0010 1.38 0.15
2−5 65 0.0010 0.0005 2.15 0.11
2−6 129 0.0003 0.0002 8.20 1.06
2−7 257 0.0002 0.0001 38.58 3.18

offline computational step, general to all RDMAOPs on a given grid (i.e., independent
of source density), in which finite difference operators are constructed for the grid.

The reader can compare this example directly to [5]. (We remark that scaling
has been considered so that direct comparison of performance via Table 1 is indeed
appropriate.) The run times for given problem sizes are quite similar, and the error
of our method is smaller, likely due to the higher order of accuracy.

We next consider the OT problem with source density

(99) f(x) = e
− 1

2(1.4)2
|x|2(3 + sin(8πx1) sin(6πx2)),

normalized to define a probability measure. The source density and the image of the
grid Kh under the computed transport map with h = 1/64 are shown in Figure 9.

We record numerical results in Table 2. We do not have an exact solution against
which to compare our numerical solution, so we measure the error of our numerical
solution for given h = 2−k by comparing it against the numerical solution for h =
2−(k+1), subsampled on the grid of size 2−k. Again we observe error of order h2

and linear growth of computational time with respect to the number of discretization
points.
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Fig. 9. The source density defined by (99) and the image of Kh under the computed transport
map (h = 1/64).

Table 2
RDMAOP results for the OT problem defined by the source density of (99). Errors refer to

error of the transport (i.e., gradient) map. Error for a given h = 2−k is measured by comparing
against the computed solution for h = 2−(k+1). Nx denotes the number of discretization points
along a single dimension. Thus the number of optimization variables is N2

x .

h Nx L∞ error L2 error On. time (s) Off. time (s)

2−3 17 0.0375 0.0179 1.27 0.58
2−4 33 0.0119 0.0049 1.51 0.11
2−5 65 0.0034 0.0012 1.90 0.10
2−6 129 0.0013 0.0007 9.51 0.40
2−7 257 – – 42.31 3.13

8. Removing the restriction on the target measure. We propose a method
for solving a given OT problem with general target density by solving a sequence of
OT problems with constant target densities. This approach amounts to a fixed point
iteration and is inspired by the Ricci iteration in differential geometry [35, 36], where
a similar approach for solving complex Monge–Ampère equations is introduced. We
make no attempt at rigor in the following argument.

Suppose that Λ is convex as above, and let the target measure be given by g dx
on its support Λ. Let V = vol(Λ), so the constant density 1/V defines the uniform
probability measure on Λ.

Recall that we want to solve (in some sense)

(100)
det
(
∇2ϕ(x)

)
=

f(x)
g (∇ϕ(x))

, x ∈ Ω,

∇ϕ(Ω) = Λ.

Note that the solution ϕ of this problem simultaneously solves an OT problem with
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source density

(101)
f/(g ◦ ∇ϕ)∫

Ω f/(g ◦ ∇ϕ) dx
=

f/(g ◦ ∇ϕ)∫
Ω det (∇2ϕ(x)) dx

=
f/(g ◦ ∇ϕ)

V

and constant target density 1/V .
Keeping this fact in mind, we turn to defining our iterative procedure. Let f (0) =

f , and let ϕ(0) be the solution of

det
(
∇2ϕ(x)

)
= V f (0)(x), x ∈ Ω,

∇ϕ(Ω) = Λ,

i.e., the original OT problem with the target measure replaced by the uniform measure
on Λ. We then define f̃ (1)(x) := f(x)/g(∇ϕ(0)(x)), set f (1) := f̃ (1)/

( ∫
Ω f̃

(1) dx
)
, and

solve another OT problem with source density f (1) and uniform target measure. This
iteration can be repeated many times.

More precisely, we define ϕ(i+1) to be the solution of

det
(
∇2ϕ(x)

)
= V f (i+1)(x) x ∈ Ω,

∇ϕ(Ω) = Λ,

where f (i+1) := f̃ (i+1)/
( ∫

Ω f̃
(i+1) dx

)
for f̃ (i+1) := f/(g ◦ ∇ϕ(i)).

Note from our argument above (in particular, (101)) that the solution of (100) is
a fixed point of this iteration.

Suppose that ϕ(i) converges to some ϕ̃ as i → ∞ in some suitably strong sense.
Then we expect that ϕ̃ is a fixed point and hence solves (100). We do not prove
such convergence (and remark that it is not at all obvious to us how to do so), but
we observe below that rapid convergence occurs in practice, at least with densities
bounded away from zero.

8.1. Numerical implementation of the iteration. We consider the same
setting as in section 7 but now allow g to be nonconstant. We fix some mesh size
h > 0 for the entirety of the iterative procedure. We inductively define ψ(i) ∈ RKh to
be a grid function solving the RDMAOP associated to the data (f (i), h) (see Definition
7.1), where f (i) := f̃ (i)/I

[
f̃ (i)
]

for f̃ (i)(x) := f(x)/g(Dh,xψ
(i−1)) and for I an operator

on grid functions that approximates the integral over K. In particular, for u a grid
function, we take I[u] to return the true integral of the function that is constant on
each grid cube, with its value on a given grid cube equal to the average of u over
the vertices of the cube. We terminate iteration when the L2 distance between two
consecutive solutions first drops below h2/2.

8.2. Numerical experiments. Consider once again the source density of (98)
and (unnormalized) target density

(102) g(x) := 3 + sin(3πx1) sin(2πx2).

The source density and the image of the grid Kh under the computed transport
map with h = 1/64 are shown in Figure 10.

Detailed numerical results are recorded in Table 3. Once again we do not have
an exact solution against which to compare our numerical solution, so we measure
the error for h = 2−k by comparing against the result for h = 2−(k+1). Once again
we observe error of order h2 and linear growth of computational time with respect to
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Fig. 10. The target density defined by (102) and the image of Kh under the computed transport
map (h = 1/64), with source density as in Figure 8.

Table 3
RDMAOP results for the OT problem defined by the source density of (98) and the target

density of (102). Errors refer to error of the transport (i.e., gradient) map. Error for a given
h = 2−k is measured by comparing against the computed solution for h = 2−(k+1).

h L∞ error L2 error Iterations On. time (s) Off. time (s)

2−3 0.0814 0.0317 3 3.36 0.59
2−4 0.0175 0.0095 4 5.59 0.09
2−5 0.0056 0.0031 4 8.97 0.09
2−6 0.0017 0.0008 5 45.16 0.40
2−7 – – 5 207.02 3.08

the number of discretization points. The number of iterations needed to reach a fixed
point does not appear to depend strongly on h.

Next we consider an example in which the iterative method does not perform as
well as one might hope. Define (unnormalized) source and target densities by

(103) f = 1.5− 1B(0,0.5)

and

(104) g(x) = 6 + 25
∑

x′1,x
′
2∈{−1,1}

e
− 1

2(0.2)2
|x−(x′1,x

′
2)|2

.

The target density and the image of the grid Kh under the computed transport
map with h = 1/64 are shown in Figure 11.

Results are recorded in Table 4. This time we observe observe error of order h,
though still linear growth of computational time. This outcome seems to be typical
for the iterative procedure when the target density is close to zero on a large portion
of the target domain. Indeed, the iterative procedure completely fails to converge
numerically in many situations with highly degenerate target densities. It is not clear
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Fig. 11. The target density defined by (104) and the image of Kh under the computed transport
map (h = 1/64), with source density as in Figure 103.

Table 4
RDMAOP results for the OT problem defined by the source density of (103) and the target

density of (104). Errors refer to error of the transport (i.e., gradient) map. Error for a given
h = 2−k is measured by comparing against the computed solution for h = 2−(k+1).

h L∞ error L2 error Iterations On. time (s) Off. time (s)

2−3 0.0312 0.0192 6 7.42 0.63
2−4 0.0156 0.0069 7 10.53 0.10
2−5 0.0091 0.0041 7 14.11 0.12
2−6 0.0045 0.0025 9 78.90 0.38
2−7 – – 10 381.73 3.11

to the authors whether this shortcoming is inherent in the method or whether it can
be overcome with more stable fixed point iteration techniques.

9. Future directions. First, it is an interesting open question whether our
convergence proof can be upgraded to yield error bounds.

Second, we plan to follow up on the remarks of section 7.1 regarding the essential
difficulties of proving convergence for the RDMAOP.

Third, the theoretical and numerical convergence properties of the fixed point it-
eration of section 7 remain open, as does the possibility of a better numerical approach
to the fixed point iteration.
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